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An accurate analytical parametrization for the exchange-correlation free energy of the homogeneous
electron gas, including interpolation for partial spin polarization, is derived via thermodynamic analysis of
recent restricted path integral Monte Carlo (RPIMC) data. This parametrization constitutes the local spin
density approximation (LSDA) for the exchange-correlation functional in density functional theory. The
new finite-temperature LSDA reproduces the RPIMC data well, satisfies the correct high-density and low-
and high-T asymptotic limits, and is well behaved beyond the range of the RPIMC data, suggestive of
broad utility.
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The homogeneous electron gas (HEG) is a fundamen-
tally important system for understanding many-fermion
physics. In the absence of exact analytical solutions for its
energetics, high-precision numerical results have been
critical to insight. Recently published [1] restricted path
integral Monte Carlo (RPIMC) data for the HEG over a
wide range of temperatures and densities open the oppor-
tunity to obtain closed form expressions for HEG
thermodynamics, in particular, the exchange and correla-
tion (XC) contributions. Such expressions extracted from
Monte Carlo data are well known for the zero-T HEG,
where they have played a major role in understanding
inhomogeneous electron-system behavior. We provide the
corresponding thermodynamical expressions for wide
temperature and density ranges.
Density functional theory (DFT) is the motivating

context. For ground-state DFT, the most basic XC density
functional is the local density approximation (LDA). It
approximates the local XC energy per particle, εxc, as the
value for the HEG at the local density, εLDAxc ðnðrÞÞ ≈
εHEGxc ðnÞjn¼nðrÞ [see, also, Eq. (3) below]. Computational
implementation is via parametrizations [2,3] of HEG
quantum Monte Carlo (QMC) data [4]. Recent QMC
results [5] for the spin-polarized T ¼ 0 K HEG also
validate the spin-interpolation formulas used in that case,
the local spin density approximation (LSDA). All more-
refined εxc approximations reduce to the LSDA in the weak
inhomogeneity limit.
Finite-temperature DFT [6–8] increasingly is being used

to study matter under diverse density and temperature
conditions [9–14]. In it, the XC free energy is defined by
decomposition of the universal free-energy density func-
tional (independent of the external potential). With the
T-dependence suppressed for now, that functional is

F ½n� ¼ T s½n� − TSs½n� þ FH½n� þ F xc½n�: (1)

The first two terms are the noninteracting kinetic energy
and entropy (also known as the Kohn-Sham KE and
entropy), FH½n� is the classical electron-electron
Coulomb energy, and the XC free energy by definition is

F xc½n� ≔ ðT ½n� − T s½n�Þ − TðS½n� − Ss½n�Þ
þ ðUee½n� − FH½n�Þ; (2)

with T ½n� and S½n� the interacting system kinetic energy
and entropy and Uee½n� the full quantum mechanical
electron-electron interaction energy.
Just as for T ¼ 0 K, the existence theorems of finite-T

DFT are not constructive for F xc, so approximations must
be devised. Common practice [9] in simulations is to use a
T ¼ 0 K XC functional, F xc½nðTÞ; T� ≈ Exc½nðTÞ�. This
gives only the implicit T dependence provided by nðr; TÞ.
However, there is substantial evidence from both finite-T
Hartree-Fock [12,15] and finite-T exact exchange calcu-
lations [16,17] of non-negligible T dependence in exchange
itself.
Addressing that T dependence until now has been

hampered by lack of an accurate, simulation-based LDA
for F xc. Thus, several F xc approximations have been
proposed on the basis of various models; see Ref. [18]
and references therein. The RPIMC data for the HEG in
Ref. [1] provide the opportunity to fill that gap with a
LSDA on equivalent footing with the ground-state ELSDA

xc .
Note that Ref. [19] provided a fit for the RPIMC XC
internal energy data but not for F xc. Subsequently, an error
in that fit was corrected. Here we use the corrected fit
denoted as “BDHC.” Incidental to the main theme of
Ref. [18], two of us fitted the unpolarized finite-T
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RPIMC results [1] and extracted a parametrization of the
HEG XC free energy. That constitutes a LDA F xc. But
several important issues were not treated; namely, which of
the several possible thermodynamic routes is optimal for
extracting F xc, what functional form is the most reliable
for the requisite fitting of the RPIMC data, which RPIMC
data to use, and how to handle the partially polarized case.
We address those here to provide the free-energy LDA and
LSDA with full T dependence,

F xc½nðTÞ; T� ¼
Z

drnðr; TÞfxc½nðTÞ; r; T�

≈
Z

drnðr; TÞfHEGxc ðnðr; TÞ; TÞ

≡ FLSDA
xc ½nðTÞ; T�; (3)

where fHEGxc ðn; TÞ ¼ FHEG
xc ðn; TÞ=N is the XC free energy

per particle for the HEG and N the electron number. Note
that at T ¼ 0 K, fxc ¼ εxc and F xc ¼ Exc.
Unless noted otherwise, we use Hartree atomic

units. (Observe that Refs. [1,19] use Rydberg a.u.) The
interacting HEG is described completely by three param-
eters: the density nHEG ¼ n ¼ N=V, spin polarization
ζ ¼ ðn↑ − n↓Þ=n, and temperature T. Its XC free energy
per particle fHEGxc ðnHEG; TÞ ¼ FHEG

xc ½nHEG; T�=N is the
quantity of interest. As usual, we use the Wigner-Seitz
radius, rs ¼ ð3=4πnÞ1=3, and reduced temperature
t ¼ T=TF, with the Fermi temperature Tζ¼0

F ¼
½3π2n�2=3=2kB for the unpolarized case and Tζ¼1

F ¼
½6π2n�2=3=2kB for the fully polarized case. Significant
densities range from rs ≪ 1 through rs ≥ 10. The relevant
temperature range is at least 0 ≤ t ≤ 10. While large t
represents the classical limit, the approach to it will vary
with rs, via the dimensionless Coulomb coupling param-
eter, Γ ¼ 2λ2rs=t with λ ¼ ð4=9πÞ1=3.
The RPIMC data for the HEG [1] are the total kinetic T

and potential (or interaction) Uee energies for given rs and t.
The issues are which RPIMC data to use and how best to
extract a broadly reliable fxc from those data.
One thermodynamic route is via the RPIMC data for the

XC internal energy per particle, which is the difference of
the interacting and noninteracting system total internal
energies per particle, εxc ¼ τ þ uee − τs, with τ ¼ T =N,
uee ¼ Uee=N, and τs ¼ T s=N the noninteracting HEG
kinetic energy per particle (i.e., T s is the finite-T
Thomas-Fermi KE [20,21]). Observe that τs is given both
analytically and tabularly in the Supplemental Material for
Ref. [1]. From Eq. (2) fxc ¼ εxc − Tσxc, which with a
standard thermodynamic relation for the entropic contri-
bution per particle

σxcðrs; tÞ ¼ − t
T
∂fxcðrs; tÞ

∂t
����
rs

(4)

gives

fxcðrs; tÞ − t
∂fxcðrs; tÞ

∂t
����
rs

¼ εxcðrs; tÞ: (5)

Observe that the FH from Eq. (2) vanishes for the HEG
because of the neutralizing background.
Reference [18] used another thermodynamic relation to

obtain fxc directly from the RPIMC interaction energy uee
per particle via integration over Γ, the coupling constant
[22]. This is equivalent [23] to

fxcðrs; tÞ ¼
1

r2s

Z
rs

0

dr0sr0sueeðr0s; tÞjt: (6)

Exact integration requires the choice of an integrable form
fitted to the RPIMC data for uee. Instead, differentiation of
Eq. (6) with respect to rs gives

2fxcðrs; tÞ þ rs
∂fxcðrs; tÞ

∂rs
����
t
¼ ueeðrs; tÞ; (7)

which is the analogue of Eq. (5). Equations (5) and (7) may
be combined to yield

τsðrs; tÞ − t
∂fxcðrs; tÞ

∂t
����
rs

− fxcðrs; tÞ − rs
∂fxcðrs; tÞ

∂rs
����
t
¼ τðrs; tÞ: (8)

Fitting a suitable analytical fxcðrs; tÞ to one of Eqs. (5),
(7), or (8) constitutes our fits A, B, and D, respectively.
While fits B and D each use only one subset of the RPIMC
data (uee, τ, respectively), fit A uses both via the combi-
nation εxc. A second way to use both data sets is to fit fxc to
Eqs. (7) and (8) concurrently; this is our fit C. All four fits
use the RPIMC data on its discrete mesh, while the assumed
functional form for fxc should provide useful extrapolation
outside the RPIMC data domain. Brown et al. used [19]
a functional form similar to the Perrot–Dharma-wardana
[24] XC functional to fit the RPIMC data for εxc. We tested
both the original and Brown et al. versions and found
physically implausible behavior (oscillations) in the rs
dependence. See the Supplemental Material [25].
A Padé approximant as originally given by Ichimaru

and co-workers [22,26–28] and also employed in Ref. [18]
for uee is suggestive. We used an extension of that form for
fxc (rather than uee) for both the unpolarized and fully
polarized cases. With explicit polarization labeling, the
form is

fζxcðrs; tÞ ¼ − 1

rs

ωζaðtÞ þ bζðtÞr1=2s þ cζðtÞrs
1þ dζðtÞr1=2s þ eζðtÞrs

; (9)

where ω0 ¼ 1 and ω1 ¼ 21=3 for ζ ¼ 0, 1, respectively.
The functions aðtÞ, bζðtÞ − eζðtÞ, in turn, are Padé
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approximants in t. The original forms [28] proved to be
inadequate to reproduce the RPIMC εxc data at rs ¼ 1. This
inflexibility was remedied by adding one parameter in
cζðtÞ, with the resulting definitions for aðtÞ, bζðtÞ–eζðtÞ as
follows (ζ labeling suppressed for clarity):

aðtÞ ¼ 0.610 887 tanh

�
1

t

�

×
0.75þ 3.043 63t2 − 0.092 27t3 þ 1.7035t4

1þ 8.310 51t2 þ 5.1105t4
;

(10)

bðtÞ ¼ tanh

�
1ffiffi
t

p
�
b1 þ b2t2 þ b3t4

1þ b4t2 þ b5t4
; (11)

cðtÞ ¼
�
c1 þ c2 exp

�
− c3

t

��
eðtÞ; (12)

dðtÞ ¼ tanh

�
1ffiffi
t

p
�
d1 þ d2t2 þ d3t4

1þ d4t2 þ d5t4
; (13)

eðtÞ ¼ tanh

�
1

t

�
e1 þ e2t2 þ e3t4

1þ e4t2 þ e5t4
: (14)

In the small-rs and small-Γ limits, Eq. (9) reduces to the
finite-T X functional of Ref. [29] (see, also, Refs. [22,26]
for details),

fζxðrs; tÞ ¼ −ωζ

rs
aðtÞ: (15)

The correct T ¼ 0 K limit is obtained by using the recent
T ¼ 0 K QMC data [5]. Thus, Eq. (9) first was fitted at
t ¼ 0 to the zero-T QMC data, which fixed the parameters
b1, c1, d1, and e1. The remaining parameters in Eq. (9) were
fitted to the finite-T RPIMC data. The correct high-T limit,

lim
T→∞

fζxcðrs; tÞ ¼ − 1ffiffiffi
3

p r−3=2s T−1=2 þOðT−1Þ; (16)

for all ζ corresponds to the leading correlation term; see
Refs. [29–31]. It was incorporated by fixing the ratio
between the parameters bζ;5 ¼

ffiffiffiffiffiffiffiffi
3=2

p
ωζλ

−1bζ;3 in bζðtÞ.
Each of the thermodynamic routes A, B, C, or D to fxc

from a RPIMC data subset can be tested by computing
values for both the subset used in that fit and the unused
subsets and comparing the results with the original RPIMC
data. For example, fit A uses RPIMC εxc data as input to
Eq. (5). Thus, we calculated values of ufitee via Eq. (7) and τfit

via Eq. (8) from the fit A fxc and compared the results to the

RPIMC data in the form of mean absolute relative errors
(MARE). The essential result is that fits A and C are close
in quality, but fit A is modestly better on the grounds of
MARE for εxc. From the same perspective, the resulting fit
to εxc also is better than the BDHC fit. The final parameters
are shown in Table I and error comparisons are in Table II.
[Those parameters were done with analytical derivatives in
Eq. (5), after exploration of fits with numerical thermody-
namic derivatives.] Other error comparisons are in the
Supplemental Material [25].
Figure 1 shows XC free fxc and internal εxc energies per

particle from fit A for rs ¼ 1, 2, and 40 over
0.01 ≤ t ≤ 1000, with the εxc energies per particle com-
pared to the RPIMC data. The εxc calculated with the

TABLE I. Fit A parameters for the XC free-energy functional
for the unpolarized (ζ ¼ 0) and fully polarized (ζ ¼ 1) HEG.

ζ ¼ 0 ζ ¼ 1

b1 0.283 997 0.329 001
b2 48.932 154 111.598 308
b3 0.370 919 0.537 053
b4 61.095 357 105.086 663
b5

ffiffiffiffiffiffiffiffi
3=2

p
λ−1b3 ¼ 0.871 837

ffiffiffiffiffiffiffiffi
3=2

p
21=3λ−1b3 ¼ 1.590 438

c1 0.870 089 0.848 930
c2 0.193 077 0.167 952
c3 2.414 644 0.088 820
d1 0.579 824 0.551 330
d2 94.537 454 180.213 159
d3 97.839 603 134.486 231
d4 59.939 999 103.861 695
d5 24.388 037 17.750 710
e1 0.212 036 0.153 124
e2 16.731 249 19.543 945
e3 28.485 792 43.400 337
e4 34.028 876 120.255 145
e5 17.235 515 15.662 836

TABLE II. RPIMC data sets used for fits with MARE and
absolute maximum relative errors (%) for calculated kinetic,
interaction, and XC internal energies per particle for unpolarized
(ζ ¼ 0) and fully polarized (ζ ¼ 1) cases.

Function Fitted to τ uee εxc

ζ ¼ 0
BDHC εxc � � � � � � 1.3=14
Fit A εxc 1.3=10 1.4=4.5 0.5=3.3
Fit B uee 1.8=6.1 0.3=1.2 1.9=9.2
Fit C τ and uee 1.0=8.3 0.5=2.8 1.2=7.5
Fit D τ 0.6=5.1 5.0=18 5.6=23
ζ ¼ 1
BDHC εxc � � � � � � 2.3=18
Fit A εxc 1.7=13 1.6=4.8 1.2=7.8
Fit B uee 2.2=15 0.5=3.7 2.2=10
Fit C τ and uee 1.2=8.0 0.8=3.8 1.7=9.3
Fit D τ 0.6=4.2 6.3=17 7.2=25
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BDHC form [19] also is shown. The results for fit A agree
as well with the RPIMC data as the BDHC fit. The t → 0
limit of the entropic contribution, of course, is zero, so the
fits and the RPIMC data converge to the t ¼ 0 εxc value.
The zero-T unpolarized equilibrium density rs ¼ 4.19 from
our fit is identical with the value obtained by Perdew and
Wang [32]. The high-T limit is determined by Eq. (16) for
all the fxc functionals. Note that we do not attempt to have
our fit describe ordered phases (e.g., Wigner crystal) at
large rs. To do so would be an unwarranted extrapolation of
the RPIMC data. Additional comparisons are in the
Supplemental Material [25].
We now turn to intermediate polarizations. In principle,

the XC functional has separate exchange and correlation
contributions. At T ¼ 0 K, exact spin scaling [33] defines
the X functional for arbitrary polarization in terms of the
unpolarized one. The argument can be extended straight-
forwardly to T > 0 K; see the Supplemental Material [25].
No corresponding exact result is known for interpolating
the C contribution between ζ ¼ 0 and ζ ¼ 1, so approxi-
mate forms are used. Moreover, it is convenient computa-
tionally to use an XC functional rather than separate X and
C contributions. We used such a form,

fxcðrs; T; ζÞ ¼ f0xcðrs; tÞ
þ ½f1xcðrs; 2−2=3tÞ − f0xcðrs; tÞ�ϕðrs; t; ζÞ;

(17)

with ϕðrs; t; ζÞ the polarization interpolation function and t
on the right-hand side chosen systematically to be that of
the unpolarized case, t ¼ T=Tζ¼0

F , as well as in Eqs. (19)
and (20) below. At T ¼ 0 K [34],

ϕðζÞ ¼ ð1þ ζÞα þ ð1 − ζÞα − 2

2α − 2
; (18)

with α ¼ 4=3. Perrot and Dharma-wardana [24] developed
a finite-T generalization, ϕðrs; t; ζÞ, by replacing the
exponent α ¼ 4=3 with a function, αðrs; tÞ, as follows:

αðrs; tÞ ¼ 2 − gðrsÞ expf−tλðrs; tÞg;
gðrsÞ ¼

g1 þ g2rs
1þ g3rs

;

λðrs; tÞ ¼ λ1 þ λ2tr
1=2
s : (19)

Their parametrization used classical map hypernetted
chain (CHNC) data for the HEG and proper behavior as
T → 0 K. We have reparametrized ϕðrs; t; ζÞ using the
more recent T ¼ 0 K QMC data (which includes inter-
mediate polarizations ζ ¼ 0.34, 0.66) [5] along with the
CHNC data for intermediate ζ ¼ 0.6 in Table IV of
Ref. [24]. (Observe that this is the only use of those
CHNC data in this work.) The result is a modest
improvement for T ¼ 0 K. The new parameter values
are in Table III. The value of g1 is fixed from the
condition that limrs→0ϕðrs; t ¼ 0; ζÞ ¼ ϕðζÞ. The revised
ϕðrs; t; ζÞ depends weakly on t for all rs and ζ.
Exact spin interpolation for finite-T exchange yields the

exchange free energy

fxðrs; T; ζÞ ¼
1

2
½ð1þ ζÞ4=3f0xðrs; t↑Þ

þ ð1 − ζÞ4=3f0xðrs; t↓Þ�; (20)
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FIG. 1 (color online). εxc and fxc from fit A for the unpolarized ζ ¼ 0 (top) and the fully polarized ζ ¼ 1 (bottom) HEG at rs ¼ 1, 2,
and 40 along with RPIMC data and BDHC fit for εxc.
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where t↑=↓ ≡ tð2n↑=↓; TÞ ¼ 2kBT=½3π2ð2n↑=↓Þ�2=3 and
n↑=↓ ¼ ð1� ζÞn=2. [Note that fζx for ζ ¼ 0, 1 given by
Eq. (15) also is given both analytically as a Fermi integral
and tabulated in the Ref. [1] Supplemental Material as
Ex;HF.] Thus, the correlation free energy can be found from
Eqs. (17) and (20) to be

fcðrs; T; ζÞ ¼ fxcðrs; T; ζÞ − fxðrs; T; ζÞ: (21)

To test the T → 0 K limit of our interpolation, we
calculated the correlation energy per particle

εcðrs; ζÞ≡ fcðrs; 0; ζÞ ¼ fxcðrs; 0; ζÞ − fxðrs; 0; ζÞ; (22)

where fxðrs; 0; ζÞ≡ εxðrs; ζÞ is the LSDA X energy per
particle. A comparison with the Perdew-Zunger (PZ) LSDA
[2] and QMC simulation data shows excellent agreement
as a function of ζ for rs ¼ 0.25, 0.5, 1, 2, 3, 5, 10, and 20,
with the maximum relative difference between Eq. (22) and
the PZ correlation energy about 4% at rs ¼ 0.25 and 0.5.
(See, also, the Supplemental Material [25].)
In sum, we have extracted the XC free energy for the

finite-T HEG from the RPIMC data, parametrized it in a
form with exact asymptotic limits (rs ≪ 1, t ¼ 0, and
t ≫ 1) for both the spin unpolarized and fully polarized
cases, and provided a T-dependent interpolation for inter-
mediate polarizations. The result, Eqs. (9–14) and (17–19)
and associated parameters, is a proper finite-T extension of
the widely used ground-state LSDA.
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