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We investigate collective phenomena with rotationally driven spinners of concave shape. Each spinner
experiences a constant internal torque in either a clockwise or counterclockwise direction. Although the
spinners are modeled as hard, otherwise noninteracting rigid bodies, their active motion induces an
effective interaction that favors rotation in the same direction. With increasing density and activity, phase
separation occurs via spinodal decomposition, as well as self-organization into rotating crystals. We
observe the emergence of cooperative, superdiffusive motion along interfaces, which can transport inactive
test particles. Our results demonstrate novel phase behavior of actively rotated particles that is not possible
with linear propulsion or in nondriven, equilibrium systems of identical hard particles.
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Introduction.—Active matter is a rapidly growing branch
of nonequilibrium soft matter physics with relevance to
biology, energy, and complex systems [1]. In active matter,
dissipative, steady-state structures far from equilibrium can
emerge in systems of particles by converting energy to
particle motility [1,2]. Recent works reported novel col-
lective behavior such as giant number fluctuations [3],
clustering [4], swarming [5], fluid-solid phase separation of
repulsive disks [6,7], and collective rotors [8]. Effective
interactions emerging between hard, self-propelled par-
ticles were shown to cause phase separation and coexist-
ence [6,9–12]. Experimentally, some of these phenomena
were demonstrated by driving the system via vibration [13],
chemical reaction [14], diffusiophoresis [12], and light
activated propulsion [15]. To date, most studies have
focused on self-propulsion where the constant input of
energy to each particle goes directly into translational
motion and, hence, active forces couple to particle veloc-
ities. Converting the input of energy into rotational motion,
however, does not directly influence translational motility,
and couples only to the particles’ angular momentum. We
denote such a coupling of active driving forces to angular
velocity as active rotation.
Active rotation may be achieved by various methods,

e.g., external magnetic fields [16,17] and optical tweezers
[18,19]. Biological organisms, such as dancing algae [20]
and clusters of sperm cells [21], can spin naturally. Certain
self-propelled anisotropic shapes exhibit circular motion
[8,22]. Rotating particles submersed in a fluid experience
hydrodynamic interactions that can be attractive or repul-
sive through the formation of vortices [16,23]. Collective
phenomena involve synchronization and self-proliferating
waves [24], and vortex arrays [25]. Beyond these examples,
however, the potential use of active rotation for pattern
formation and self-organization in driven systems is only

starting to be investigated systematically. In this Letter, we
show with computer simulations that effective interactions
emerge between spinners rotating in the same direction,
and between oppositely rotating spinners, due to the active
motion itself. The result is phase separation, rotating
crystals, cooperative and heterogeneous dynamics leading
to superdiffusive motion, and complex phase behavior.
Model and methods.—Our spinner particle is modeled by

four peripheral disks of radius σ rigidly attached to a central
disk of radius 3σ at each of the compass points, Fig. 1(a).
The system is governed by a set of coupled Langevin
equations for translation and rotation

M
∂vi
∂t ¼ Fi − γtvi þ FR

i ; (1)

I
∂ωi

∂t ¼ τDi þ τi − γrωi þ τRi ; (2)

where M, I, vi, and ωi are mass, moment of inertia, and
translational and angular velocity. Each spinner is driven by
an external torque τDi ¼ �τD of constant magnitude, with
positive sign for clockwise spinners (“A”) and negative sign
for counterclockwise spinners (“B”). Spinners are hard
particles that interact via a purely repulsive contact poten-
tial, resulting in internal forces Fi and torques τi. Energy is
dissipated through translational and rotational drag coef-
ficients γt and γr. Noise is included via Gaussian random
forces FR

i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γtkT0

p
RðtÞ and torques τRi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γrkT0

p
RðtÞ

[27] that model a heat bath at temperature T0. Random
forces are applied directly to the centroid of each spinner.
Langevin dynamics simulations are performed on

graphic processing units (GPUs) with the HOOMD-blue
software package [28] using up to 16 384 spinners, half of
which are driven to always spin clockwise, and the rest
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driven to spin counterclockwise. Each disk is treated as a
point mass m located at the center, which means M ¼ 5m
and I ¼ 64mσ2. The hard contact is modeled via a WCA
potential with parameter ϵ [29] shifted to the surface of the
spinner such that its range is a small fraction of the particle
diameter, thereby approximating hard shapes. In the low
Reynolds number limit, the translational and rotational drag
coefficients are related through the Stokes-Einstein and
Stokes-Einstein-Debye relations. If we approximate the
spinner as a disk of effective radius ~σ, the relations for disks
give γr ¼ 4

3
~σ2 γt ¼ 100σ2γt. We choose σ and ϵ as the units

of length and energy. The unit of time is t0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
.

Thermal noise is specified by T� ¼ kT0=ϵ. Throughout the
Letter, we report results for τD=ϵ ¼ 1 and γt=ðt−10 mÞ ¼ 1

unless stated otherwise.
Nonequilibrium phase behavior.—Following equilibra-

tion with active rotation turned off, the time evolution of the
active system is characterized by an approach towards
steady state. Energy input to rotational motion by the
applied torque is transferred to the translational degrees of
freedom and then dissipated by drag forces. In steady state,
we observe that the energy balance κ ¼ Etrans=Etotal
between translational and total kinetic energy converges.
While the nondriven 2D system has κ ¼ 2=3 as dictated by
the equipartition theorem, a value κ < 2=3 quantifies the
nonequilibrium character.
We analyze the behavior of κ as a function of density ϕ

and noise T�. As shown in Fig. 1(b), at low density the
driven rotational motion dominates translational motion
and κ → 0. With increasing density, the number of colli-
sions increases and κ approaches the equipartition value.
Interestingly, we find a nonequilibrium phase transition in
the range 0.25 < ϕc < 0.48. For zero noise, the increase in
κ is sharp, and possibly discontinuous, but becomes
continuous as the noise increases. Based on the observation
of a rapidly increasing length scale in the pair distribution
function gABðrÞ of opposite spinners, we identify this
transition as the phase separation of the system into A-rich
and B-rich domains. Increasing the noise from zero at fixed
values of applied torque [inset of Fig. 1(b)] initially lowers
the critical density ϕc, because particle collisions that
facilitate the onset of phase separation are more frequent.
If the system is too noisy, phase separation is hindered and
the trend is reversed.
For the remainder of the Letter, we follow

Refs. [8,25,30] and neglect the role of noise by setting
T� ¼ 0. In this limit, the dynamics of the system is
characterized by two parameters, the density ϕ and the
low-density dimensionless steady-state angular velocity
ω0 ¼ τDt0=γr, which is a measure of activity. Figure 1(c)
shows the ϕ-ω0 nonequilibrium phase diagram at (or near)
steady state. Movies of the spinner dynamics can be found
in the Supplemental Material [26].
At low densities, we find a frozen (absorbing [31] or

dilute [25]) state, where the spinners are fixed in place and

rotate at angular velocity ω0. Translational motion does not
couple to rotation, the system is nonergodic, and drag
forces dominate. The few collisions that occur from the
initial kinetic energy (random initialization) die out quickly
due to dissipation [32].
At higher density, the frequency of collisions increases.

When the time interval between collisions is sufficiently
short, i.e., comparable to the characteristic time m=γt for
energy dissipation, nonstop chained collisions can
sustain the transfer from rotational to translational energy.
Depending on ω0, we observe a transition to either a mixed
fluid or a phase separated fluid. While spinners with high
activity, ω0 ≥ 1.2, display two transitions (first to the mixed
fluid, then phase separation), these transitions merge for
lower ω0.
As the density increases further, the spinners organize

into crystals that rotate collectively about their centers of
mass; particles no longer rotate about their individual
centers. The critical density decreases as the activity
increases in agreement with Ref. [6], but not with Ref. [7].
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FIG. 1 (color online). (a) Clockwise (A) and counterclockwise
(B) spinners. (b) The ratio of translational to total kinetic energy κ
indicates the presence of a phase transition (ω0 ¼ 1). Error bars
are smaller than the symbols. The inset shows the critical density
ϕc as a function of noise T�. (c) Nonequilibrium phase diagram
based on simulation data (see the Supplemental Material [26]) at
T� ¼ 0. Lines indicate phase boundaries. Insets show represen-
tative snapshots as the system approaches steady state. A and B
spinners in the fluid (crystal) phase are shown in dark (light) blue
and orange (red) colors. Fifty:fifty mixtures are used in (b),(c).
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If crystallization occurs before phase separation is com-
pleted, the crystal size is limited by the phase separating
domains. The angular velocity of a crystal decreases with
radius, similar to rotors assembled from polymers by self-
propelled bacteria [33]. Dynamically, this phase represents
a new kind of active crystal: a rotating crystal, distinct from
the two previously reported types, traveling and resting
crystals [34].
Effective interaction between spinners.—Wemeasure the

time evolution of the characteristic domain size. Domains
coarsen over time with t1=3 as shown in Fig. 2(a) by
determining the first zero of gABðr; tÞ. The peak height of
the structure factor scales as t2=3 (see the Supplemental
Material [26]). Together, these behaviors are typical for
spinodal decomposition of a binary mixture in 2D in the
absence of hydrodynamics [35]. The domain size growth
exponent is similar to that measured in a biological system
of self-organizing mussels [36], but different from that
found in other systems of self-propelled colloids [6,11].

The origin of the phase separation is investigated with a
system of one B spinner (the intruder) in a dense matrix of
A spinners. We compare their mean-squared displacements
MSD ¼ hjxiðtÞ − xið0Þj2i in Fig. 2(b). While matrix par-
ticles have higher translational kinetic energy as seen in the
ballistic regime t < t0, the curves cross and diffusion of the
intruder is faster for t ≫ t0. The MSD of the matrix has a
plateau indicative of caging. We extract the translational
diffusion coefficientD and plot it as a function of density in
Fig. 2(c). With increasing density, diffusion speeds up and
the gap between intruder and matrix spinners widens.
We investigate the effective interaction between NB

intruders among NA matrix spinners by mapping our
nonequilibrium system to an equilibrium system of iso-
tropic particles interacting with pair potentials. The map-
ping is achieved via the effective demixing (ED) potential,
which describes the preference for demixing (see the
Supplemental Material [26]). The ED potential quantifies
the difference in kinetic behavior between like spinners and
unlike spinners in the limit of a vanishing density of
intruders, nB ¼ NB=ðNA þ NBÞ. It is defined as

UEDðrÞ ¼ −kT lim
nB→0

log

�
gBBðrÞ
gBAðrÞ

�
: (3)

Here, gBB and gBA are type-specific radial distribution
functions. The definition guarantees that in the absence of
external torque, UEDðrÞ ¼ 0. In the presence of external
torque we find an attractive well in UEDðrÞ of several kT
[37] that deepens with increasing density, Fig. 2(d). At the
critical density ϕc ¼ 0.35, the well depth is about 2kT. This
value of interaction strength is comparable to the critical
attraction for the vapor-liquid transition of 2D Lennard-
Jones liquids [38] and to the critical reduced interaction in
the 2D Ising model, 2.269kT [39].
The microscopic origin of the effective interaction can be

understood by comparing pairs of neighboring spinners.
Consider two opposite spinners, Fig. 2(e). The “teeth” of
the gearlike spinners move together for part of the cycle,
synchronizing their rotation when in contact due to steric
restriction, and then move apart. Now consider two
spinners rotating in the same direction, Fig. 2(f). Since
the tangential velocities at contact are in opposite direc-
tions, the spinners momentarily “stick” sterically. They
cannot spin about their individual axes and instead transfer
their angular momentum momentarily to the pair and rotate
together for part of the cycle before moving apart. The
consequence is a longer contact time for like spinners
compared to opposite spinners, breaking the symmetry
between otherwise identical particles and resulting in an
emergent, effective attraction between like neighboring
spinners.
Collective dynamics at interfaces and transport.—As

spinners phase separate, they form interfaces separating
regions of opposite rotation. The short-time diffusion
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FIG. 2 (color online). (a) Domain size growth for a 50:50
mixture of spinners during phase separation (ϕ ¼ 0.5). (b),(c)
Comparison of (b) mean-squared displacements and (c) transla-
tional diffusion coefficient D for an intruder in a matrix of
opposite spinners. Curves in (b) at different densities are offset for
clarity. (d) Effective demixing potential obtained for NA ¼ 100
and NB ¼ 2. In (a)–(d), activity is set to ω0 ¼ 1. (e),(f) Typical
interaction of (e) two opposite and (f) two like spinners.
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ΔxðtÞ ¼ xðtÞ − xð0Þ is visualized for a density where phase
separation, Figs. 3(a)–3(d), and also crystallization,
Fig. 3(e), occur. We observe that the translational dynamics
of the spinners is heterogeneous and cooperative, in
particular at the interfaces. While diffusion is Brownian
in the bulk, spinners move linearly along the interface in
a superdiffusive manner with MSD ∝ t2. As phase
separation progresses, the total length of the interfaces
decreases, reducing the number of superdiffusive spinners.
Interestingly, both the translational and rotational kinetic
energies are uniform across the demixed fluid (see the
Supplemental Material [26]). This means spinners at inter-
faces do not move faster, but instead move farther in a given
timewindow. Such dynamical behavior is reminiscent of the
stringlike dynamical heterogeneity in supercooled liquids
and dense colloids [40].
To investigate the possibility of extracting useful work

from the active motion of the spinners, we add inactive test
particles to the system. An inactive particle has the same
shape, size, and hard interaction as a spinner, but is not
subject to a rotational driving. From their trajectories,
Fig. 3(f), we observe that inactive particles diffuse to the
interface and get dragged along the interface by the current
of the active spinners. This observation is confirmed by the
density of inactive particles as a function of the distance x
to the interface, ρIðxÞ, relative to their bulk density ρIð∞Þ,
which is strongly peaked at the interface, Fig. 3(g). The
preference of inactive particles to sit at the moving interface
increases with density and could be utilized for collective
transport at mesoscopic scales.
Discussion.—The phase separation of rotationally driven

active particles is realizable in experiments provided the
particles are permanently assigned a rotation direction
while being free to move translationally and collide with
one another. Applying torques to photosensitive spinners
through optical trapping is one promising route [19] and
may even be possible on the colloidal scale where the

dynamics can be observed through the microscope [15,18].
In many situations, however, restricting the rotation direc-
tion is not possible. This is in particular the case for 3D
systems. Our observation of an emergent attraction between
like rotating particles suggests a possible alignment [24] of
the rotation axes in 3D. Whether actively rotated particles
can indeed synchronize spontaneously into such a nematic
spinner phase (alignment of the rotation axes) remains to
be seen.
We also observe phase separation, rotating crystals, and

collective transport with Brownian dynamics simulations,
where the inertial term is absent and the dynamics is
dominated by viscous drag forces (see the Supplemental
Material [26]). This means inertia is not essential for the
phenomena reported here and raises interesting questions
about local conservation of angular momentum. Finally, we
note that the dynamics and interaction of actively rotated
particles in a fluid can be influenced by hydrodynamic
interactions [16,24], which are not taken into account here.
We believe the tendency towards phase separation and
synchronization is robust, if hydrodynamics prefers like-
rotating neighbors as in Refs. [20,23]. Studying the phase
behavior of externally driven or self-rotating (internally
driven) spinners in a fluid environment remains an inter-
esting open question.
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