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We consider a low-dimensional model of convection in a horizontally magnetized layer of a viscous fluid
heated from below. We analyze in detail the stability of hydrodynamic convection for a wide range of
two control parameters. Namely, when changing the initially applied temperature difference or magnetic
field strength, one can see transitions from regular to irregular long-term behavior of the system, switching
between chaotic, periodic, and equilibrium asymptotic solutions. It is worth noting that owing to the
induced magnetic field a transition to hyperchaotic dynamics is possible for some parameters of the model.
We also reveal new features of the generalized Lorenz model, including both type I and III intermittency.
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The nature of convection in a viscous fluid is still not
sufficiently understood. As is well known for a fluid heated
from below in a gravitational field with a vertical temper-
ature gradient, starting from basic hydrodynamic equations
Lorenz obtained three nonlinear ordinary differential
equations [1]. Following this seminal paper further studies
have revealed the complexity of nonperiodic deterministic
flow, including strange attractors, bifurcations, chaotic
behavior, and intermittency (see, e.g., Ref. [2] for review).
We have generalized this model for a magnetized fluid, with
a new variable responsible for the induced magnetic field [3].
Transitions from regular (periodic) to irregular (non-

periodic) behavior often occur in dynamical systems
through an intermittency scenario, where signals alternate
between regular (laminar) phases and irregular bursts.
Based on different characteristic dynamical behavior,
three basic types I, II, and III of intermittency have been
classified [4], which are related to saddle-node, Hopf, and
inverse period doubling bifurcations, correspondingly. In
principle, these types of intermittent behavior can be iden-
tified experimentally by investigating their different statistical
properties. In this Letter we discuss type I intermittency,
which we have identified in the generalized Lorenz model
of hydromagnetic convection, besides type III intermittent
behavior reported earlier in our previous paper [3].
Hyperchaos is typically defined as a complex nonperiodic

behavior, where at least two Lyapunov exponents are
positive in contrast to standard chaotic dynamics that is
characterized by one positive Lyapunov exponent [5,6].
Obviously, hyperchaos cannot occur in the standard
Lorenz model because it is only possible in at least four-
dimensional systems. In this Letter for the first time we
identify such a behavior in our newmodel for hydromagnetic
convection.

In general, evolution of a viscous magnetized fluid is
described by the following partial differential equations:

dv
dt

¼ − 1

ρ
∇
�
pþ B2

2μ0

�
þ ðB ·∇ÞB

μ0ρ
þ ν▵v þ f; (1)

dB
dt

¼ ðB ·∇Þv þ η▵B; (2)

dT
dt

¼ κ▵T; (3)

where ν, η, and κ denote kinematic viscosity, magnetic
diffusive viscosity (resistivity), and thermal conductivity of
the fluid, in the Navier-Stokes, the magnetic advection-
diffusion, and the heat conduction equations, respectively
[7]. This hydromagnetic problem is rather complex since
both time and space changes, ðd=dtÞ≡ ð∂=∂tÞ þ v · ∇, of
thevelocityv of the flow, the temperatureT (withmassdensity
ρ and pressure p), and the magnetic field B are considered.
We consider here a standard scenario of the Rayleigh-

Bénard problem [8], a horizontal (x axis) viscous fluid
layer of height h heated from below with an applied vertical
(z axis) temperature gradient δT and gravitational accel-
eration g (see, e.g., Refs. [9,10]). The fluid is treated as
incompressible,∇ · v ¼ 0, except for the volume expansion
in f ¼ ρg term, where ρ ¼ ρ0ð1 − βδTÞ (Boussinesq
approximation [11]).
We have argued that in the case of a thin horizontal layer,

the influence of an external horizontal magnetic field B0

(along the x direction) should be important [3]. Using an
approximation ðB · ∇Þv ≈ ðB0 ·∇Þv in Eq. (2), ∇ · B ¼ 0,
we have obtained from the general magnetohydrodynamic
Eqs. (1)–(3) four ordinary differential equations [3]:
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X
: ¼ −σX þ σY − ω0W; (4)

Y
: ¼ −XZ þ rX − Y; (5)

Z
: ¼ XY − bZ; (6)

W
: ¼ ω0X − σmW; (7)

where a dot denotes an ordinary derivative with respect
to the normalized time t0 ¼ ð1þ a2Þκðπ=hÞ2t. As usual
r ¼ Ra=Rc is a control parameter of the system propor-
tional to the temperature gradient δT, or a Rayleigh number
Ra ¼ gβh3δT=ðνκÞ normalized by a critical number Rc ¼
ð1þ a2Þ3ðπ2=aÞ2.
In the standard three-dimensional Lorenz model, a

time-dependent variable X is proportional to the intensity
of the convective motion, Y and Z describe the temperature
profile in Eq. (3), in a double asymmetric [parameters a,
b ¼ 4=ð1þ a2Þ] Fourier representation [1]. In the gen-
eralized Lorenz model we have in addition a new time
dependent variable W describing the profile of the magnetic
field induced in the convected magnetized fluid according to
Eqs. (1) and (2), see Ref. [3]. We have also introduced
another control parameter proportional to the initial magnetic
field strength B0 applied to the system, which is defined here
as a basic dimensionless magnetic frequency ω0 ¼ vA0=v0,
with vA0 ¼ B0=ðμ0ρÞ1=2 and v0 ¼ 4πκ=ðabhÞ. The last
term in Eq. (4) comes from the anisotropic tension of the
magnetic field ðB · ∇ÞB=ðμoρÞ in Eq. (1). Naturally, besides
the Prandtl number σ ¼ ν=κ, the properties of the magnet-
ized fluid are characterized by an analogue parameter σm ¼
η=κ ¼ σ=Prm (where Prm ¼ ν=η is the magnetic Prandtl
number) appearing now in Eq. (7) and resulting from the last
terms in Eqs. (2) and (3).
In Fig. 1 we present plots of the largest Lyapunov

exponent illustrating long-term (asymptotic) behavior of
the dynamical system of Eqs. (4)–(7) in the space of
dimensionless control parameters ω0 and r. The Lyapunov
exponents are computed for solutions of Eqs. (4)–(7) using
the QR decomposition method (discussed thoroughly in
Sec. VC of Ref. [12]) that provides reliable and accurate
estimation of the full spectrum of the exponents when
differential equations are explicitly known. The method
requires long time series (that naturally appear in the case
of periodic or chaotic solutions); thus, a preparatory step
has been applied to detect convergence of a given solution
to a fixed point. Three cases of parameter σm (ratio of
Prandtl numbers) are considered here as related to different
magnitude of resistive dissipation affecting the system.
In Ref. [3] a single case was studied parametrically:

σm ¼ 1 and 0 < r < 50, which corresponds to the bottom
left part of Fig. 1(b). A range of 0 < r < 500 in the present
study is ten times larger as compared with Ref. [3], which
allows us to identify new features of the generalized Lorenz
model. The present extended analysis shows that plots for

different values of σm have roughly similar structure. In the
right bottom part (where long-term limit cycle oscillations
are not possible) solutions converge to fixed points
(corresponding to equilibria). Next in the proximity of

FIG. 1. Dependence of the largest Lyapunov exponent λ1 (color
coded) on ω0 and r parameters of the generalized Lorenz model
for (a) σm ¼ 0.1, (b) σm ¼ 1, and (c) σm ¼ 3. Other parameters of
the system have fixed values: σ ¼ 10, b ¼ 8=3. Convergence of
the solutions of Eqs. (4)–(7) to fixed points (λ1 < 0) is shown in
black, to periodic solutions (λ1 ¼ 0)—in violet/blue color (see the
color bar for λ1 ¼ 0), to chaotic solutions (λ1 > 0)—in a color,
consistently with the color bar scale, from violet/blue to yellow.
Fine structures are shown in the insets.
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the diagonal a wide region of periodic (limit cycle)
behavior is located, and further toward the left top part
of the plots one may find nonperiodic (chaotic) solutions
followed by a periodic region close to the left top corner.
For σm ¼ 0.1 and 1 [Figs. 1(a) and 1(b)] the “diagonal”
region of periodic solutions is homogeneous (without gaps)
whereas for σm ¼ 3 [Fig. 1(c)] one can see a gap of chaotic
solutions dividing this region into two parts. More detailed
inspection of the plots reveals complicated structure of
regions, where domains of chaotic solutions are intertwined
finely with domains of periodic solutions that makes
influence of the parametersω0 and r even more complicated,
see insets to Fig. 1. The fine structure in the parameter space
is seen for all values of σm parameter considered here, and
it implies interesting properties of the dynamics as regards to
regularity of convective motions, when affected by changing
boundary conditions related to control parameters r and ω0

used in the model.
As seen in Fig. 1 the dependence of solutions of the

system on ω0 parameter (related to B0) can be quite
complicated. In the simplest case, e.g., for r ¼ 50, ignoring
the fine structure of the chaotic region, for the increasingω0

parameter we observe a transition from chaotic (through
periodic) to fixed point solutions, cf. (Fig. 1 in [3]). This
suggests purely damping influence of the increasing
external magnetic field. However, for higher values of r,
e.g., for r ¼ 350, we rather observe more complex tran-
sitions between dynamical regimes: “periodic” –“chaotic”
–“periodic” –“fixed point” for σm ≤ 1 [Figs. 1(a) and 1(b)]
and “periodic” –“chaotic” –“periodic” –“chaotic”
–“periodic” –“fixed point” for σm ¼ 3 [Fig. 1(c)].
The external temperature gradient δT also influences the

dynamics in an intricate manner as one can see in Fig. 1
analyzing the dependence of solutions on r ∝ δT for fixed
values of ω0. Obviously, for ω0 ¼ 0we obtain a description
fully corresponding to that for classical Lorenz equations of
Ref. [1] with the well-known Lorenz strange attractor.
This can be easily understood by analysis of Eqs. (4)–(7),
where Eq. (7) decouples from the first three equations for
ω0 ¼ 0, which gives classical Lorenz system. In this case
the dynamical scenario for increasing r with ω0 ¼ 0 can be
described as the following transition between dynamical
regimes: “fixed point” –“chaotic” –“periodic” –“chaotic”
–“periodic”. However, for higher values of ω0, e.g., ω0 ¼
15 the initial transition from fixed point to chaotic dynam-
ics has an intermediate phase of limit cycle periodic
oscillations. Some new strange attractors appearing for
the magnetized fluid have been presented in Ref. [3].
It is even more interesting that in the range 0 < r < 500

we have identified hyperchaotic solutions for small values
of σm parameter. Namely, in Fig. 2 we show the dependence
of the two largest Lyapunov exponents λ1 (dashed line) and
λ2 (solid line), λ1 > λ2, on the parameter r of the system
for ω0 ¼ 5.95, σm ¼ 0.1 with fixed values of the other
standard Lorenz system parameters σ ¼ 10, and b ¼ 8=3.

The second Lyapunov exponent λ2 becomes positive for
r ≥ 454:7, which implies a transition to hyperchaotic
dynamics. The largest Lyapunov exponent λ1 increases
abruptly during this transition, whereas the second expo-
nent λ2 also becomes positive still increasing its value
rather smoothly. The region of hyperchaotic behavior has a
gap for 461:8 < r < 462:4, where periodic solutions
appear, see Fig. 2. These results may be of special interest
for experimental identification of hyperchaotic dynamics in
plasmas. Admittedly, it could rather be difficult to identify
such a system in general because any dynamical system
exhibiting divergence of trajectories in two directions (with
two positive Lyapunov exponents) is clearly more complex
than a chaotic system with only one such an unstable
direction [6]. In this context, analysis of statistical proper-
ties (e.g. distributions or scaling in intermittency) of the
observed dynamical behavior can be more interesting
from experimental point of view; thus we discuss the
statistics below.
In Ref. [3] some solutions (for r ¼ 28, ω0 ¼ 4.8,

σm ¼ 1) of the dynamical system of Eqs. (4)–(7) have
been discussed as examples of type III intermittent
behavior. In the present study we extend this analysis to
other cases. It is known that the classical Lorenz system
exhibits type I intermittency transition from periodic to
chaotic dynamics for the value of control parameter
r ≈ 166:06. In fact, in Fig. 1 one can see a branch of
periodic-chaotic boundary originating from this point for
ω0 ¼ 0 in the parameter plane. When the magnetic field is
taken into account, type I intermittency occurs along this
branch, e.g., for r ¼ 256, ω0 ≈ 3.74, σm ¼ 1.
Next, we determine the lengths of laminar phases and

their distribution using an algorithm, where pieces of a long
numerical solution are compared to a periodic (laminar)
phase pattern in four-dimensional phase space. The piece-
wise numerical solution of Eqs. (4)–(7) is a set of points in

FIG. 2. Dependence of the two largest Lyapunov exponents λ1
(dashed line) and λ2 (solid line), λ1 > λ2, on parameter r.
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the phase space, thus based on the average distance
between the points and their nearest neighbors found in
the laminar pattern we can identify laminar phases. As
demonstrated in Fig. 3 for the type I intermittency with
characteristic U shape of the distribution of laminar phases
the maximum length of laminar phase has some finite
value. Moreover, as shown in Fig. 4 in this case we observe
another characteristic attributes of the type I intermittency,
namely scaling of the mean length of laminar phase with
control parameter ∝ ϵ−1=2, where ϵ ¼ jω0 − ω0cj.
In conclusion, the four-dimensional dynamical system

for convection in a magnetized viscous fluid exhibits quite
unusual features depending on the control parameters
of the model. It is known that increasing temperature
gradient δT in the standard Lorenz equations does not
imply more chaos in the model [2]. Our study provides
detailed picture of this counterintuitive influence of
δT on the generalized Lorenz model, where the system
goes through intertwined regions of chaotic, periodic,
and fixed-point asymptotic solutions. Quite surprisingly
a similar complicated influence is seen for systematic
increase of the background magnetic field strength B0.
The fine structure in the control parameters space clearly
shows that the influence of B0 is much more intricate than a
simple stabilizing effect predicted by simplified analysis of
influence of the magnetic field on convective motion
discussed in textbooks (see, e.g. Ref. [13]). This is interest-
ing because physical circumstances are indeed known where
even weak field may have strong destabilizing effect [14].
In a chaotic regime but near the border with periodic

solutions, in addition to previously identified type III
intermittency, we have also observed type I intermittent
behavior of the system that could provide new mechanisms
of release of kinetic and magnetic energy bursts. It is worth
noting that the observed sudden transitions from regular to
irregular behavior only mimic stochastic forces, but in fact
they result from nonlinearity; i.e., they are due to the
disappearance of the fixed points of the dynamical system
or owing to a change in their stability.
It is important to note that besides the chaotic behavior

well known for the Lorenz model with unmagnetized fluid,

we have also identified here for the first time a hyperchaotic
dynamics in a magnetic dynamical system, with two
positive Lyapunov exponents appearing for some value
of the intensity of the applied magnetic field. Admittedly,
this new type of chaos is only possible in an at least four-
dimensional system, hence this results here from the
interplay between the anisotropic tension of magnetic field
lines and magnetic viscosity.
Basically, our analysis focuses on the characteristic

signatures of the hydromagnetic convection that can be
relevant for observational identification of this kind of
dynamical behavior, e.g., through analysis of statistical
properties of observed intermittent energy bursts as com-
pared with those predicted by the model presented in this
Letter. In this context the new hyperchaotic system char-
acterized by both types I and III of intermittent energy
release may provide an approximate description of irregular
convective dynamical processes observed often in various
magnetized plasmas in both the laboratory and space, e.g.,
for solar sunspots [15], planetary and stellar liquid interiors
[16], and possibly for magnetoconfined plasmas in tokamaks
[17], nanodevices, and microchannels in nanotechnology.
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