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The semiclassical and quantum dynamics of two ultrastrongly coupled nonlinear resonators cannot be
explained using the discrete nonlinear Schrödinger equation or the Bose-Hubbard model, respectively.
Instead, a model beyond the rotating wave approximation must be studied. In the semiclassical limit this
model is not integrable and becomes chaotic for a finite window of parameters. For the quantum dimer we
find corresponding regions of stability and chaos. The more striking consequence for both semiclassical
and quantum chaos is that the tunneling time between the sites becomes unpredictable. These results,
including the transition to chaos, can be tested in experiments with superconducting microwave resonators.
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The unquestionable relevance of the discrete nonlinear
Schrödinger equation (DNLS) extends beyond the theo-
retical characterization of waves in nonlinear media [1,2],
to describe also a rich variety of physical phenomena
ranging from biological physics [3] to gravitational ana-
logues [4]. It is, therefore, not surprising that the theoretical
predictions of the existence of, e.g., discrete solitons [5],
vortices [6], and self-trapping [7] can be experimentally
tested in a wide variety of setups, such as arrays of optical
waveguides [8], polaritons [9], or Bose-Einstein conden-
sates [10]. In this respect, the DNLS equation bridges
nonlinear science and quantum many body physics,
since it is the semiclassical or many boson limit of the
Bose-Hubbard (BH) model, describing among other things,
tunneling of ultracold atoms in optical lattices.
The most basic realization of the DNLS is the

dimer, formed by twoweakly coupled nonlinear resonators.
The two-site DNLS is integrable and exhibits a transition
[11] from linear oscillatory dynamics (Rabi regime) to
self-trapping (localization). Between these limiting cases
lays the Josephson regime, where the quantum equivalent
of the dimer, the two-site BH model [12], behaves as
a bosonic Josephson junction [13]. Furthermore, the
signatures of the classical symmetry breaking bifurcation
can also be observed in the quantum limit [14]. In that
sense the dynamical behavior in the DNLS resembles the
Mott-superfluid transition in the BH model [15].
In this work we study a more general model of two

oscillators with amplitude ψ with coupling no longer
captured by perturbation theory: the ultrastrongly coupled
(USC) bosonic junction

ψ
:
k ¼ −iωψk þ iJðψ1−k þ θψ�

1−kÞ − i~γjψkj2ψk; (1)

for k ¼ 0, 1. The USC model ( θ ¼ 1 above) becomes the
DNLS [θ ¼ 0 in (1)] with nonlinearity strength ~γ in the

limit of weak couplings jJ=ωj ≪ 1, by means of
the rotating wave approximation (RWA). However, in
the ultrastrong coupling regime, where jJj≃ jωj=2
(see the Supplemental Material [16]), the RWA breaks
down and new physics is found. The quantum equivalent of
(1) are now the ultrastrongly coupled nonlinear resonators,

H ¼
X
k¼0;1

�
ωâ†kâk þ

~γ

2
ðâ†kÞ2â2k

�

− Jðâ†0â1 þ θâ†0â
†
1 þ H:c:Þ; (2)

with Fock operators ½âk; â†j � ¼ δjk of both oscillators with
frequency ω. This quantum dimer lacks a superselection
rule and no longer conserves the number of particles,
N̂ ¼ P

kâ
†
kâk, just like the classical model (1) no longer

conserves the norm N ¼ P
kjψkj2, when θ ¼ 1.

The semiclassical and quantum versions of these
ultrastrongly coupled bosonic junctions are of great rel-
evance in the study of superconducting quantum circuits
[17]. Labeled as quantum optics on a chip, quantum circuits
have reproduced most interesting features of cavity quantum
electrodynamics (QED) using photons and superconducting
qubits as simulators of light and atoms. One of their greatest
advantages is the possibility of pushing the light-matter
interaction strength close to the energy of the bare frequency
transitions—the ultrastrong coupling. Quite recently, this
new regime has been experimentally demonstrated in these
and other solid state setups [18]. Within this Letter the term
ultrastrong refers to the coupling between two nonlinear
bosonic modes. Couplings between superconducting reso-
nators, such as the ones we are going to discuss in this
Letter, recently have been reported experimentally [19].
What physics can be expected in these new coupling

regimes? Our study of the ultrastrongly coupled
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semiclassical and quantum bosonic dimers reveals that both
systems experience a transition to chaos for negative values
of ~γ. The chaotic regions are finite and can be characterized
both spectrally and in phase space, but the most clear
signature is the change in the self-trapping dynamics, found
in the unpredictability of the tunneling time. These features
can be observed using quantum circuits, either in the
few-photon or in the semiclassical regime.
The semiclassical limit.—In the limit of a large number

of excitations, n̂k ≔ hâ†kâki ≫ 1, where quantum fluctua-
tions become small, the semiclassical dynamics of the
coupled resonators can be approximated using coherent
states. Replacing the mean-field values âk → hâki ≔ ψk in
Eq. (2), we obtain a classical Hamiltonian for the dynami-
cal variables ψk which, by the Hamilton equations ψ

:
k ¼−i∂ψ�

k
H̄, evolve according to the ultrastrongly coupled

bosonic junction equation (1).
In the DNLS limit (θ ¼ 0) the system is integrable and

both the energy and the total number of excitations

N ¼ hN̂i ¼ jψ0j2 þ jψ1j2 ¼ ∶n̂0 þ n̂1 (3)

are conserved. Moreover, the equations are symmetric
under the transformation ~γ → −~γ, ψ → ψ� and ψk →
ψk expðikπÞ (or J → −J). This symmetry and conser-
vation law disappear when we consider the USC model,
θ ¼ 1, which is no longer integrable. This has dramatic
consequences for the dynamics.
We have calculated the semiclassical evolution of the

population imbalance ρðtÞ ≔ n0ðtÞ − n1ðtÞ using Eq. (1),
comparing the results obtained from the DNLS with the
USC model. Along this work we set J ¼ 1 and start with
the initial condition n0ð0Þ ¼ N0, n1ð0Þ ¼ 0. This leaves as
only free parameters the relative coupling J=ω and inter-
action strengths γ ¼ ~γN0=J. The normalized minimal
imbalance ρmin ¼ mint½ρðtÞ=NðtÞ� is a witness of self-
trapping: a value ρmin ≃−1 indicates an oscillating dynam-
ics where particles eventually tunneled to the opposite site,
while the imbalance remains locked around ρmin ≃ 1, when
self-trapping dominates the dynamics. In Fig. 1(a) we plot
ρmin for the USC model, after a sufficiently long time
t ∼ 100=J, starting with N0 ¼ 1. For weak coupling
J=ω → 0, the DNLS dimer is recovered and the self-
trapping transition happens at the analytic value jγRWA

c j ¼
4 [11], denoted by white dashed lines in Figs. 1(a)–(c). For
increasing coupling strength, J=ω, and positive γ, self-
trapping is observed at slightly smaller nonlinearities γ.
More interesting is the behavior for negative γ. Increasing
J=ω from zero, the transition is shifted to values
jγj > jγRWA

c j, reaching a minimum at J=ω ≈ 0.1. Around
this value we begin to observe strong irregular oscillations
of ρmin.
To better understand the dynamics in this parameter

region, we compute the normalized spectral density

gðν; γÞ ≔ jf0ðν; γÞj2 þ jf1ðν; γÞj2P
ν½jf0ðν; γÞj2 þ jf1ðν; γÞj2�

; (4)

defined in terms of fkðνÞ, the Fourier transform of ψkðtÞ.
Figures 1(b) and (c) show gðν; γÞ for the RWA case and the
full mode, respectively, at fixed J=ω ¼ 0.5, with dashed
vertical lines delimiting the analytical prediction
jγRWA

c j ¼ 4. In Fig. 1(b) we see uniform and well-separated
lines, indicating that the dynamics is dominated by only a
few frequencies, which we identify with the nonlinearly
shifted normal modes or the decoupled localized mode.
However, in Fig. 1(c) we observe two broad windows with
a huge number of frequencies involved in the dynamics,
indicating the presence of chaos for negative values of γ.
To get an insight about why chaos can be only found for

negative γ, it is worth looking at the linear modes of the
systems and their nonlinear continuations. First, we search
for linear solutions (γ ¼ 0) of Eq. (1), and we find the
corresponding eigenvalues fνg and eigenvectors of the
system (see the Supplemental Material [16]). Two modes
are symmetric and the other two are antisymmetric, each
having a positive and a negative eigenfrequency. For finite
γ, we are able to continue both types of states into the
nonlinear regime, finding that

ν↑↑ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ωþ γJ=2 − Jð1 − θÞ�½ωþ γJ=2 − Jð1þ θÞ�;

p

ν↑↓ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ωþ γJ=2þ Jð1 − θÞ�½ωþ γJ=2þ Jð1þ θÞ�p
:

Since ν has to be real, in the USC model (θ ¼ 1) there
exists a window in parameter space where one of these
modes exists:

FIG. 1 (color online). (a) ρmin vs γ and J=ω. Dashed white lines
stand for the DNLS self-trapping transition, jγRWA

c j ¼ 4. Spectral
densities gðν; γÞ at J=ω ¼ 0.5 for the RWA (b), and the USC
model (c). The thick lines in (c) show the analytic continuations
of Eq. (5) for J=ω ¼ 0.5 and N0 ¼ 1. Gray (blue) lines are for
the symmetric modes and light gray (yellow) lines for the
antisymmetric ones.
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−
�
2ω

J
þ 4

�
< γ <

�
4 − 2ω

J

�
: (6)

In Fig. 1(c) we also plot the eigenfrequencies given by
Eq. (5) for J=ω ¼ 0.5, θ ¼ 1 and N0 ¼ 1. For positive γ all
four states exist and trajectories, localized or not, are
regular. At negative values of the nonlinear parameter
the situation is more complex. For−4 < γ < 0, the periodic
orbits corresponding to the symmetric states disappear and
chaotic trajectories are found. This region corresponds to
the first window of chaos, and the chaotic trajectories are
found to be dominant till the bifurcation point γ ¼ −4,
where the symmetric states reappear. However, for −8 <
γ < −4 the antisymmetric modes are missing, and a second
region of chaos appears. In Figs. 1(a) and (c) it is possible
to observe for γ < −4, first an excitation of the nonlinear
self-trapped state, and then a weaker chaotic region.
To obtain a more complete characterization of chaos we

have computed Poincaré sections in the ρ-φ reduced phase
space of the system, where φðtÞ ≔ arg½ψ0� − arg½ψ1� is the
phase difference between oscillators. We plot points for
which N ¼ hNi coincides with the norm averaged over the
integration interval. We start in Figs. 2(a)–(b) with the
DNLS or RWA (θ ¼ 0), for which the norm NðtÞ ¼ hNi is
conserved, and we have two types of stationary orbits
depending on the value of the initial imbalance: periodic
orbits and self-trapped states. The situation is quite differ-
ent in the USC model, where N is not conserved. For
positive values of γ, the Poincaré sections show deformed
tori corresponding to the quasiperiodic motion of the
oscillators [Fig. 2(c)], but for negative γ, these tori coexist
with chaotic trajectories [Fig. 2(d)]. The chaotic nature of
these orbits was confirmed by the computation of
Lyapunov exponents, which were found to be positive
for the chaotic trajectories shown in Fig. 2(d).

Quantum dynamics.—A similar study has been done
for the quantum models in Eq. (2). Starting with an
initial state that corresponds to an imbalanced Fock
state jψi ¼ jn0ð0Þi ⊗ jn1ð0Þi, with N0 ¼ n0ð0Þ þ n1ð0Þ,
we simulated the evolution of the number of photons,
n0;1ðtÞ, and their imbalance, using exact diagonalizations in
a truncated Fock basis.
Our first tool for analyzing the dynamics is again

the spectral density gðν; γÞ from Eq. (4), which is com-
puted replacing fkðν; γÞ with the Fourier transform of nkðtÞ
for a given γ. The spectral density is shown in Fig. 3 for
positive frequencies [20]. In the quantum case with the
RWA (θ ¼ 0) we observe the same symmetry γ → −γ
[cf. Fig. 3(a)] as in the classical DNLS dynamics. The
absence of this symmetry in the USC model (θ ¼ 1) also
manifests in Fig. 3(b) with the appearance of a multitude of
frequencies for negative γ, in stark resemblance of our
semiclassical signature of quantum chaos.
As in the semiclassical limit [cf. Fig. 1] the self-trapping

transition for γ < 0 is shifted due to the excitation of
chaotic trajectories. To resolve this transition more clearly,
we have computed a dimensionless tunneling time τ ≔
minðJt∶ρ ¼ 0Þ defined as the time at which the population
imbalance first changes its sign, for initial conditions
n0ð0Þ ¼ N0, n1ð0Þ ¼ 0. Let us first discuss the situation
with a large number of particles, N0 ¼ 17, where the
quantum and semiclassical models are expected to con-
verge. The classical self-trapping regions correspond to the

FIG. 2. Phase space diagrams (top with θ ¼ 0) and Poincaré
sections (bottom for θ ¼ 1) with J=ω ¼ 0.5, (a),(c): γ ¼ 7 with
ρð0Þ ∈ ð−1; 1Þ, φð0Þ ¼ 0 and (b),(d): γ ¼ −7, ρð0Þ ∈ ð−1; 1Þ,
ϕð0Þ ¼ π, respectively.

FIG. 3 (color online). Quantum dynamics. Spectral density
gðν; γÞ for θ ¼ 0 (a) and θ ¼ 1 (b) [N0 ¼ ρ0 ¼ 17 and ω ¼ 2].
(c) τ vs γN, for N0 ¼ ρ0 ¼ 17 (black) and N0 ¼ ρ0 ¼ 2 shown in
green. Full (dashed) lines correspond to θ ¼ 1 (θ ¼ 0), respec-
tively. Red lines correspond to the semiclassical model results.
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shaded areas in Fig. 3(c), and the corresponding
semiclassical (quantum) tunneling times are shown in
red (black) lines, either dashed (θ ¼ 0, RWA) or solid
(θ ¼ 1, USC model). For positive γ we observe that both in
the RWA case and the USC model τ grows steeply when
entering the shaded region. The only difference is that
the quantum model does not lower the self-trapping
transition. For negative γ the RWA curve behaves sym-
metrically, whereas in the USC model we find an irregular
behavior. Furthermore, we also observe a small window of
regularity in the quantum curve, which corresponds to the
same phenomenon of a small intermediate region of
quasiperiodicity observed in the semiclassical case.
For smaller number of particles, such as N0 ¼ 2 (green

curves), quantum fluctuations become relevant and we enter
the so-called Rabi regime of the dimer [13]. The first
consequence is that self-trapping is possible only for very
large onsite interaction γ, outside the range of values consid-
ered in thiswork. The secondconsequence, the smoothness of
the curves, is a clear signature of the lackof chaos. ForN0 ¼ 2
the system is certainly far away from being semiclassical.
To obtain better insight in the tunneling dynamics,

we integrated the numerical diagonalization of (2) for
t ∈ ½0; 1000� and Δτ for J=ω ¼ 0.5, n0ð0Þ ¼ N0 ¼ 17,
γ ¼ −1. The tunneling times Δτi ¼ τiþ1 − τi were defined
as the time differences between to consecutive roots of the
population imbalance ρðJτiÞ ¼ 0. The probability distribu-
tionpðΔτÞ is shown in Fig. 4. For the case ofRWA, twomain
peaks can be observed, which are caused by Rabi oscil-
lations as well as their collapse and revival. The tunneling
time distribution for USC is much broader, showing that the
tunneling times become irregular, although there seam to be
reminiscences of the two former peaks with a main peak for
lower tunneling times. This behavior is replicated in the
structure of the Fourier transform [cf. Fig (3)], where the
ultrastrong coupling exhibits that many more frequencies
are involved in the dynamics.
Discussion.—The experimental achievement of the ultra-

strong coupling regime in light-matter interactions is a

technological revolution in the field of solid state quantum
optics [18], quantum information [21,22], and quantum
simulation [23,24]. However, these experiments also have
fundamental theoretical impact, resuscitating old discus-
sions [25] about the integrability of the Rabi model or the
emergence of chaos, which see the light with new methods
to address them [26].
The present work studies the presence of chaos in the

dynamics of the classical and quantum dimer model. Our
approach, which is based on the Heisenberg picture of
observables or expectation values, is complementary to
alternative studies of quantum chaos, such as the energy
level spacing statistics, and provides a very natural con-
nection between the quantum and classical worlds. These
techniques can be exported to other problems, such as the
Rabi model [25,27], which may be regarded as a dimer
model in which the nonlinearity of one of the wells drops to
zero and the other one is raised to infinity, creating a qubit.
This particular model has been shown to be integrable in a
novel sense [26], admitting the full classification of energy
levels and eigenstates. Compared to the dimer model, it
seems that this integrability is enough to support more
stable and regular dynamics, and indeed preliminary
studies show that the features of quantum chaos in our
model are absent in the full Rabi dynamics.
Our works studies the necessary extension of the DNLS

beyond the RWA regime.We have reported on aminimalistic
system supporting chaos both in the semiclassical and
quantum domains.These versions of the ultrastrong bosonic
junction map the semiclassical and quantum limits of two
ultrastrongly coupled nonlinear resonators. An implementa-
tion of this model consists of two superconducting coplanar
waveguide resonators with an embedded Josephson junction
or a qubit providing nonlinearity [28]. Resonator couplings
beyond RWA have been experimentally reported [19] and
strongly imbalanced states of the microwave resonators can
be engineered at will, using, for example, ancilla qubits [29].
For these models and possible experimental setups our

work predicts two main features. The first one is a
modification of the transition to self-trapping due to the
counterrotating terms. The second feature is the emergence
of chaos in the photon number dynamics for attractive
bosonic interactions. The physical signature of this novel
ultrastrong regime is the unpredictability of the tunneling
time. We want to emphasize that in our quantum calcu-
lations we did not have to resort to semiclassical or mixed
classical-quantum approximation [27], but have been able
to observe chaotic dynamics using a moderate number of
excitations, while smooth and purely quantum tunneling
prevails in the deep quantum regime. Both results can be
tested in a coupled-resonator setup, monitoring the field
that leaks from the cavity or installing additional qubits that
dispersively probe the electromagnetic field.
Finally, a natural continuation of this work is the search

of similiar features in extended coupled cavity arrays

USC

RWA

0 2 4 6 8
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FIG. 4 (color online). Probability pðΔτÞ of the tunneling times
Δτ for J=ω ¼ 0.5, N0 ¼ 17, γ ¼ −1. The case of θ ¼ 0 is shown
in orange, θ ¼ 1 in blue.
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[30,31], studying the propagation of excitations [32], or the
self-trapping dynamics in a many-body setup with dis-
sipation. We believe that our results are just a few first
examples of the rich nonperturbative theoretical landscape
opened by the new generation of solid-state experiments.
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