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From the interaction between a frequency comb and an atomic qubit, we derive quantum protocols
for the determination of the carrier-envelope offset phase, using the qubit coherence as a reference, and
without the need of frequency doubling or an octave spanning comb. Compared with a trivial interference
protocol, the multipulse protocol results in a polynomial enhancement of the sensitivity OðN−2Þ with the
number N of laser pulses involved. We specialize the protocols using optical or hyperfine qubits, Λ
schemes, and Raman transitions, and introduce methods where the reference is another phase-stable cw
laser or frequency comb.
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Quantum physics has experienced a universally recog-
nized [1] progress in the control and observation of
individual quantum systems. In this respect, trapped ions
[2,3] are one of the most mature setups, with unbeaten
precision in the realization of single- [4] and two-qubit [5]
unitaries and measurements [6,7], closely followed by
neutral atoms [8]. This spectacular progress underlies a
number of “spin offs,” such as the characterization of
atomic properties using entanglement [9] or the develop-
ment of quantum algorithms and protocols [10–12] for
studying molecular ions. The synergy is even more
advanced in the field of metrology, with accurate atomic
clocks assisted by quantum gates [13,14] or the use of
atomic squeezing for enhanced magnetometry [15,16].
Despite the exquisite precision of atomic, molecular and

optical (AMO) systems, the control and detection time
scales (∼10 μs to 10 ms) prevented using these techniques
for studying ultrafast processes. In this work, we show that
the speed of AMO setups is sufficient to accurately stabilize
the carrier-envelope offset phase (CEP) of a frequency
comb (FC). CEP effects are relevant for few-cycle pulses,
though effects in multicycle pulses have also been reported
[17]. The first observation of CEP effects was reported in
the spatial asymmetry of above-threshold ionization from
Kr gas [18] and in x-ray emission from Ne [19]. The
direction of photocurrents injected in semiconductors is
also controlled by the CEP [20,21] and the absolute CEP of
single pulses was recently measured [22]. The study of the
CEP has been generally centered on its spectral compo-
nents [23], while only a few reports have addressed time-
domain measurements of the relative phase of successive
pulses in a train [24,25]. The methods presented below
follow this less-beaten path.
Let us introduce the notion of “multipulse quantum

interferometry” (MPQI), where an atom acts as a nonlinear,
fast-response detector that efficiently measures the

differences between ultrashort laser pulses. Modeling the
atom-pulse interaction as a sequence of unitaries fUigNi¼1

through a suitable reordering of the pulses, additional gates,
and measurements, we build protocols that accurately
determine the differences among the pulses, or the proper-
ties of individual pulses themselves. Compared with cw
laser interferometry, this approach provides a polynomial
enhancement of the sensitivity because a single atom
accumulates many interferometric events.
A direct application of MPQI is the characterization and

stabilization of a frequency comb [26,27]. This device
produces a train of laser pulses with a fixed duration τ and a
regular spacing T [cf. Fig. 1(a)]. Stabilizing a comb is
ensuring that the offset frequency ν0 remains a constant and
well-known value, and that the spectrum is a collection of
regularly spaced teeth with frequencies fn ¼ n=T þ ν0
[Fig. 1(b)]. Haensch and Hall solved this problem
[28,29] in frequency space, interferometrically comparing
different teeth in the limit of many pulses. Note that this
requires a comb whose spectrum spans at least an octave, or
broadening the light with a nonlinear fiber. This stabiliza-
tion enables direct frequency comb spectroscopy, accu-
rately revealing the atomic level structure of neutral atoms
[30,31] and ions [32,33].
We rather work on the time-domain image of the pulse

train. The effect of the offset frequency is to change
the CEP from pulse to pulse, ϕnþ1 − ϕn ¼ Δϕ ¼ ν0T
[cf. Fig. 1(a)]. To address the problem of comb stabilization
wewill use MPQI, designing protocols that detect the phase
difference between pulses with the greatest accuracy
possible. We start by proposing a simple two-level protocol
for consecutive pulses in a low intensity regime (1A) and in
a θ≃ π regime (1B). We further this study by introducing
analogous protocols for delayed sequences of pulses, which
display an enhanced sensitivity (protocols 2A and 2B).
Afterwards, in order to minimize spontaneous emission, we
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describe equivalent protocols using Raman schemes.
Finally, we present a discussion of experimental errors
and the achievable sensitivities in practical implementa-
tions. The resulting methods do not require an octave-
spanning comb, broadening, or frequency doubling. They
are thus useful for a wider variety of lasers, demand less
power, and may profit from the ever-growing precision in
atomic interferometry.
Single-pulse unitary.—We start by determining the

unitaries associated to each laser pulse and how they
depend on the CEP ϕn. The interaction of multilevel atoms
with a frequency comb was studied previously [34]. We
model this interaction in the rotating wave approximation
(RWA) in order to produce analytical results [35]

HRWA ¼ 1

2
ðωat − ω̄Þσz þ sðtÞðe−iϕmσþ þ H:c:Þ; (1)

Here, m is the pulse index, sðtÞ ≥ 0is the pulse envelope,
ω̄ ¼ 2πν̄ is the comb carrier frequency, ωat is the atomic
transition frequency (ℏ ¼ 1 throughout), there is an
unknown phase ϕm for each pulse, and σx;y;z are the
Pauli matrices. The RWA works for pulses that contain
≥ 30 periods of the carrier frequency, τ ≥ 30=ν̄ (see the
Supplemental Material [36]), and allows us to explicitly
write the pulse unitaries

Um ¼ cos

�
θm
2

�
þ i sin

�
θm
2

�
σϕm

¼ e−iϕmσzU0eiϕmσz (2)

in terms of the total Rabi flip angle of a single pulse,
θm ¼ 2

R τ=2
−τ=2 sðtÞdt, with σϕm

¼ cosðϕmÞσx þ sinðϕmÞσy.
In what follows, we assume that the comb is almost
resonant, ω̄≃ ωat, and has uniform intensity, i.e.,
θm ¼ θ. These assumptions imply that we only need to
stabilize the pulse-to-pulse phase difference Δϕ.
Multipulse unitaries.—We want a protocol that effi-

ciently detects the difference between a sequence of
unequal pulses Utot ¼

Q
N
i¼1Ui, and the ideal case UN

1 .

Let us first assume an ideal qubit, seeking an ordering of
pulses with which the fidelity jtrðUN†

1 UtotÞj decreases most
rapidly with N. The simplest protocol (1A) applies N
consecutive pulses [cf. Fig. 2(a)] with low intensity, θ ≪ 1,
on the qubit, which adiabatically follows the phase

Uð1AÞ
tot ≈ 1þ iθ

sinðNΔϕÞ
2 sinðΔϕÞ ½e

iðNþ1ÞΔϕσþ þ H:c:� þ…: (3)

Note how the pulse-to-pulse phase difference Δϕ decreases
the amplitude of the Rabi oscillations and can be measured.
However, as we show later on, the functional dependence
on Δϕ implies a low sensitivity on the phase in practical
implementations of the protocol.
We can do much better by changing the intensity regime

to θ ¼ π (protocol 1B), where each comb pulse can flip the
state of the atom. Under these conditions, for an even set of
pulses we get

Uð1BÞ
tot ¼

Y
i

Ui ¼ exp

�
−2iX

N=2

k¼1

ðϕ2k − ϕ2k−1Þσz
�
; (4)

which for constant Δϕ implies Uð1BÞ
tot ¼ exp ð−iNΔϕσzÞ.

Now Δϕ can be interferometrically detected with an
enhancement proportional to the number of pulses N.
It is obvious that the sensitivity (4) increases by

maximizing the phase difference between consecutive
pulses. To profit from this, we design a set of protocols
that extract a sequence of N=2 pulses from the original
pulse train, and delay them a time Td ≫ T. This sequence is
then intercalated with the original one, cf. Fig. 2(b), so that
ϕ2k ¼ kΔϕþ ΔϕTd=T and ϕ2k−1 ¼ kΔϕ. Introducing this
sequence in Eqs. (3) and (4) we obtain, respectively, the
unitaries corresponding to protocols 2A (for θ ≪ 1) and 2B
(θ ∼ π). In particular, the unitary corresponding to protocol
2B is

Uð2BÞ
tot ¼ exp ð−iσzΔϕ × NTd=TÞ; (5)

(a)

(b)

(c)

FIG. 2 (color online). Comb phase measurement setups. A
trapped atom interacts with (a) one train of pulses or (b) two trains
with a delay Td. (c) Additional gates and a final state interrogation
build up a generalized Ramsey interferometry protocol to
estimate Δϕ and θ.

(a)

(b)

FIG. 1 (color online). (a) Electric field amplitude (solid line)
and envelope (dashed) of a pulsed laser with period T and pulse-
to-pulse phase difference Δϕ. (b) Associated spectra: a broad
peak for one pulse (dashed) and a modulated comb for a pulse
train with repetition rate frep (solid). The frequency offset ν0
depends on the pulse-to-pulse phase difference Δϕ.
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with an additional enhancement factor Nd ¼ Td=T. This is
optimal with respect to any rearrangement of the pulses,
using each pulse only once.
Interferometry and sensitivity.—We now transfer the

information of the acquired phase to the measurable
populations of the atomic states. For this, we complete
the previous unitaries with additional operations and
measurements that enable estimating Δϕ and θ. Out of
2M atoms, M are subject to the following steps [cf.
Fig. 2(c)]: (i) initialization to the ground state j0i, (ii) apply-
ing a π=2 rotation (which could be either expðiσxπ=4Þ or a
Hadamard gate) onto the ground state, (iii) applying a
reference phase ξ onto the level j1i, (iv) letting the atom
interact with the comb as described before, (v) undoing the
π=2 rotation of step (i) and measuring the state of the atom,
s ∈ f0; 1g. The measurement outcome is described by the
probability distribution P1ðsjθ;ΔϕÞ. For the remaining M
atoms we skip (ii), obtaining the distribution P2ðsjθ;ΔϕÞ.
We remark that we need no phase coherence between the
comb and the lasers that implement the π=2 rotations.
The reference phase ξ is computed a priori to maximize the
sensitivity of P1;2 to the Δϕ.
The functions P1 and P2 convey all the information

accessible in the lab: from the measurements of s in P1 and
P2 experiments, one should compute different estimators
and use them to infer the values of θ and Δϕ, with
uncertainties σθ and σΔϕ. Using error propagation and
the Fisher information we obtain fundamental lower
bounds and practical estimates (see the Supplemental
Material [36]) of the sensitivities (σ−1Δϕ and σ−1θ ) of each
protocol. As summarized in Table I, it is possible to build
estimators of minimal variance for θ and Δϕ, which
saturate the fundamental lower bounds. Moreover, we
observe that all protocols but 1A improve over the standard
statistical sensitivity

ffiffiffiffiffi
M

p
thanks to the large number of

pulses or to the use of pulses from well-separated times. In
practice, both N and Nd span several orders of magnitude,
providing a sensitivity comparable to the state of the art.
Three-level schemes.—In real atoms, if the qubit states 0

and 1 are dipole coupled by a comb, spontaneous emission
may severely limit the total interrogation time. One solution
is to use dipole-forbidden transitions restricted in practice
to the θ ≪ 1 regime. An attractive alternative is the Λ
scheme in Fig. 3, where two long-lived states j0; 1i talk via

an intermediate level jei. Applying combs or other lasers
with orthogonal polarizations on the legs of the Λ scheme,
we can create effective Rabi oscillations between j0i and
j1i while keeping a small population in jei so that
spontaneous emission is negligible.
A simple way to minimize spontaneous emission is to

turn the Λ into a Raman scheme, detuning the lasers that
couple j0; 1iwith jei. Such Raman processes mix well with
our algorithms. To start, if we have already stabilized the
phase of a cw laser, we can combine it with the pulses from
the comb [cf. Fig. 3(a)]. This process enables an accurate
determination of the CEP with respect to the cw source.
The result is a sequence of effective unitaries with an
average Rabi angle θ0 and a pulse phase ϕ0

m ¼ ϕm − ϕref ,
where ϕref is the phase of the stabilized source. The
identifications θ → θ0 and ϕm → ϕ0

m directly translate all
protocols above to this new setup. Likewise, one may
combine the FC with a stabilized one [cf. Fig. 3(b)] and use
our protocols to reconcile them.
A more interesting use of Raman transitions is to achieve

self-referencing of the comb. For this, we use the scheme
from Fig. 3(b), combining two pulses from the same comb,
but with a relative delay Td, as in Fig. 2(b). This amounts to
a self-referenced interferometric scheme based on time
shifts, not requiring frequency shifting or shearing [23].
The phases of both pulses effectively combine in a non-
trivial way in the unitary associated to the Raman process,
ϕ0
m ¼ ϕm − ϕm−Nd

¼ NdΔϕ (see the Supplemental
Material [36]). We can apply a sequence of N pulse pairs
with an effective angle θ0 that should optimally lie around
Nθ0 ≃ π=2

Uð1A;RamanÞ ¼ e−iNdΔϕσzeiN
θ0
2
σxeiNdΔϕσz (6)

and use Ramsey interferometry to measure both θ0 and Δϕ.
A generalization of protocols 2A and 2B is also possible
using a linear optics circuit with two delay lines, so that
each atom is hit by pairs of pulses with alternating phases
(ϕm, ϕm−Nd1

) and (ϕm, ϕm−Nd2
). This leads to the sensitiv-

ities shown in the lower half of Table I.
Note that using Raman schemes demands the setup to be

interferometrically stable up to a fraction of a wavelength.

TABLE I. Sensitivities σ−1Δϕ;θ of a set of 2M two- or three-level
atoms to the protocols described in the text (1A, 1B, 2A, 2B). N is
the number of pulses in a sequence, which in the delayed cases
are combined with N pulses from a later time Td ¼ NdT.

Implementation θ ≪ 1 (A) θ≃ π (B)

Two levels, no delay (1)
ffiffiffiffiffi
M

p
N

ffiffiffiffiffi
M

p
Two levels, with delay (2) Nd

ffiffiffiffiffi
M

p
NNd

ffiffiffiffiffi
M

p

Raman, one-delay (1) Nd

ffiffiffiffiffi
M

p � � �
Raman, two-delays (2) jNd2 − Nd1j

ffiffiffiffiffi
M

p
NjNd2 − Nd1j

ffiffiffiffiffi
M

p

(a) (b)

FIG. 3 (color online). Themth comb pulse interacts in a Raman
setup with either (a) a cw laser signal or (b) another comb pulse.
Controlling the polarization of the light and using the selection
rules in atomic transitions we can ensure that each pulse or laser
activates only one leg of the Λ scheme.
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When a single pulse interacts with a two-level atom it does
not matter whether the delay is a multiple of the comb
period, or fails by a small amount, δT ¼ Td − NdT
(jδTj < T). This is so because only the CEP enters the
unitary and this only contains information on ν0NdT.
However, in Raman schemes, where two pulses overlap
in time, their relative delay is a new parameter that
influences the effective Rabi angle as well as the phase.
In particular, the phase difference reads (see the
Supplemental Material [36]) Δϕ0 ¼ Δϕþ ωδT, with a
contribution due to the interferometric path cδT, which
must be separately stabilized.
To remove the need for interferometric stability, we can

use a different approach in which the comb only interacts
with one transition, j1i → jei, performing π rotations,
while j0i is a dark state. The unperturbed and delayed
pulses arrive closely in pairs, but without temporal overlap,
implementing the sequence j1i → −eiðϕm−ϕm−Nd

Þj1i. Due to
the lack of overlap, the delay errors drop and the effective
operation is a phase gate in the qubit space. Spontaneous
emission lowers the visibility and it is small because jei is
populated only for a time Te ¼ OðτÞ. Denoting by γ the
spontaneous decay rate of jei, we may afford N ¼
− logðϵÞ=γTe pulses before the visibility decreases by ϵ.
For a typical value 1=γ ¼ 8 ns and a safe Te ¼ 100 ps,
visibility decreases just 10% for 200 pulses, sufficient to
implement the last protocol in Table I.
Errors.—We can also account for ac Stark and Zeeman

shifts in experiments. In both cases, the effect can be
modeled (see the Supplemental Material [36]) as a random
term in the Hamiltonian ϵðtÞσz that makes the atomic levels
fluctuate on time scales much longer than τ. This induces
an uncertainty in Δϕ of order σϵ × ðtmþ1 − tmÞ, where σϵ is
the standard deviation of ϵðtÞ from its (zero) average, and
tm is the arrival time of each pulse. This error is cancelled
using spin-echo techniques [37] or, more directly, in
protocols 2A and 2B, by calibrating the delays so that
consecutive pulses arrive closely spaced but without over-
lap, say 10 ps apart. A pessimistic ac Stark shift
σϵ ∼ 100 Hz then induces an error ≤ 10−9 rad in Δϕ.
Another source of error is temperature: when atoms

move between pulses, they sample the laser’s spatial
variations of phase and intensity. We can eliminate such
errors (see the Supplemental Material [36]) by (i) working
in a Raman configuration which transfers no net momen-
tum to the atom and (ii) ensuring the lasers are not tightly
focused. These techniques allow working with sympatheti-
cally Doppler cooled ions in fast experiments (∼1 − 10 ms
from ion reset to detection).
The protocols discussed admit many implementations.

For concreteness, we discuss here a setup with trapped ions,
because of recent progress in connection with ultrafast
lasers [38,39]. The long coherence times of ions, tcoh ∼ 1 s
[40], allow us to consider trains of up to tcoh=T ∼ 108 pulses
from a typical comb with frep ∼ 100 MHz [41]. In the
Raman schemes, with one ion and one delay line, this

allows us to detect CEP fluctuations δΔϕ ∼ 10−8 rad and
calibrate the comb offset below δΔϕ=T ∼ 1 Hz, a remark-
able precision for 1 s of interrogation time. The numbers
improve with a two-delay Raman scheme, reaching δΔϕ ∼
10−15 where error sources become relevant. Precision
decreases marginally, δΔϕ ∼ 10−5 − 10−10, using faster
duty cycles with ∼1 ms of interrogation time (see the
Supplemental Material [36]).
Applications.—In practical applications, the phase

differences will be large. To avoid it wrapping around
2π, the number of pulses must be dynamically adjusted so
that N < 1=Δϕ, increasing it only as the comb is better
stabilized. Thus, measurement times cannot be longer than
the typical time for the random fluctuations in ν0. The
precision limit is in practice set by the time scale at which
we can provide useful feedback to the comb and not by the
interferometric protocol.
We identify two frequency ranges where our protocol

appears particularly useful. First, due to the technological
and scientific interests of midinfrared (λ ¼ 2.5–25 μm)
FCs [42], we propose to use Baþ ions (that feature several
narrow transitions around 2 μm) to stabilize a visible or
near-IR FC at Δϕ ¼ 0 so that difference-frequency gen-
eration from two of its teeth can produce a stabilized mid-
IR FC. Secondly, Mgþ presents various transitions around
280 nm which could be used to stabilize FCs in the near
UV, with application in high-harmonic generation and
strong-field physics. We discuss in the Supplemental
Material [36] further details on current FC technologies,
possible atom or ion stabilization systems, and a compari-
son between typical drift rates of an unlocked comb’s
frequency offset and the time scale of the atomic
experiment.
Summing up, we presented several quantum intefero-

metric algorithms based on the idea that one atom may
accumulate the effect of multiple laser pulses, computing
their differences through the appropriate pulse ordering,
intermediate gates, and measurements. MPQI protocols
provide a polynomial sensitivity enhancement with
respect to conventional atom or Ramsey interferometry.
MPQI can be used to detect temporal changes in the CEP
of a FC because the unitary implemented by a single pulse
is sensitive to both the intensity and the CEP, and not to
the pulse arrival time. The schemes presented are par-
ticularly suitable for nonoctave spanning combs with a
low intrinsic phase noise, such as high-power Ti:sapphire
lasers where significant phase noise is introduced by
amplification stages. Our protocols can be generalized
beyond the RWA and to characterize other properties of
the comb, such as intensity fluctuations. We anticipate
MPQI will enable new progress in fields as diverse as
ultrafast science, frequency metrology, and direct fre-
quency-comb spectroscopy, or coherent control of
molecular processes.
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