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We generalize the Power-Zineau-Woolley transformation to obtain a canonical Hamiltonian of cavity
quantum electrodynamics for arbitrary geometry of boundaries. This Hamiltonian is free from the A-square
term and the instantaneous Coulomb interaction between distinct atoms. The single-mode models of cavity
QED (Dicke, Tavis-Cummings, Jaynes-Cummings) are justified by a term by term mapping to the
proposed microscopic Hamiltonian. As one straightforward consequence, the basis of no-go argumenta-
tions concerning the Dicke phase transition with atoms in electromagnetic fields dissolves.
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The fundamental description of the interaction of atom-
istic matter with the electromagnetic field in the Coulomb
gauge is known to suffer from the presence of an awkward
term containing the square of the vector potential. In most
of the practical cases, in the framework of a diluteness
assumption for the atoms, this term can be neglected and
the observable effects are ultimately accounted for in terms
of a simplified model, such as the Jaynes-Cummings one.
In typical quantum optical systems, such a phenomeno-
logical approach with properly adjusted parameters usually
gives a satisfactory quantitative accuracy. However, there
are situations where even the qualitative behavior of the
system is questionable because of the confusion around
this term. A prominent example is the Dicke model, where
the very existence of the predicted superradiant phase
transition depends on the validity of the adopted effective
model [1–4]. Another important field in this respect is the
so-called ultrastrong coupling regime [5] realized by
novel artificial systems [6,7], where the Coulomb gauge
entailing the A-square term is not well suited to the
consistent description of light-matter interaction and the
self-interaction within the polarizable medium [8].
In this Letter, we show that cavity quantum electrody-

namics, i.e., when the field itself as well as the light-matter
interaction is significantly influenced by the presence of
boundaries, can be established at a fundamental level on a
Hamiltonian which eliminates the problem of the A-square
term. We present a canonical transformation which makes
manifest that this term is compensated by a dipole-dipole
interaction term, and the remaining terms are of a simple
linear form [9]. From our approach, it follows, for example,
that there is no principle that would prevent the super-
radiant phase transition in the case of an ensemble of
atomic dipoles in a cavity. The canonical transformation is
analogous to the Power-Zienau-Woolley transformation in
free space; however, in our approach we allow for arbitrary
geometry, thereby treating the general cavity QED system.

All our vector fields are, thus, defined on a generic
(possibly even multiply connected) domain D in the
three-dimensional real space bounded by (possibly several
disjunct) sufficiently smooth surfaces ∂D, which consist of
a perfect conductor. Overall, D is assumed to be bounded.
Consider an arbitrary number of point charges coupled to

the electromagnetic field confined into D. In the Coulomb
(minimal-coupling) gauge, defined by

∇ ·A ¼ 0; (1)

the Hamiltonian of the system reads

H¼
X
α

½pα−qαAðrαÞ�2
2mα

þε0
2

Z
D
d3rð∇UÞ2þHfield; (2a)

with U being the scalar potential, pα the canonical
momentum of particle α conjugate to its position rα, and

Hfield ¼
ε0
2

Z
D
d3r

��
Π
ε0

�
2

þ c2ð∇ ×AÞ2
�
; (2b)

with Π ¼ ε0∂tA being the momentum conjugate to A.
An important observation is that, unlike in free space,

condition (1) does not fix the potentials completely.
The remaining freedom of choosing the potentials within
the Coulomb gauge amounts to a freedom in choosing
different constant values for U on each of the connected
components of ∂D, which will result in various configu-
rations of capacitor fields carried by U. Our choice, here,
will be to set

Uj∂D ¼ 0 and A × nj∂D ¼ 0: (3)

Together with Eq. (1), the latter condition makes up for the
vector potential satisfying both the electric and magnetic
boundary conditions [10].
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The electric-dipole approximation to this Hamiltonian
can be obtained in two steps. Step 1 (long-wavelength
approximation): We assume that the individual point
charges form (a certain number of) spatially separated,
well-localized clusters, that is, atoms. Then, instead of

P
α

there appears
P

A

P
α∈A. We neglect all radiative effects on

the intra-atomic scale, that is, we setAðrαÞ ¼ AðrAÞ, where
rA is the position of that atom A which incorporates the
charge α. Step 2: We assume that the atoms have only an
electric dipole moment, that is, no net charge and no further
electric or magnetic moments.
Upon the first assumption, we split the Coulomb

(electrostatic) term into intra- and interatomic parts, and
take the intra-atomic part as identical to the one in free
space, under the assumption that the distance of atoms from
the boundary is much larger than the atomic radius. The
electric-dipole order of the Hamiltonian in Coulomb gauge
then reads

HED ¼
X
A

�
HA − upA ·AðrAÞ þ vA2ðrAÞ þ Vdipole-self

Coulomb ðrAÞ

þ
X
B

Vdipole-dipole
Coulomb ðrA−BÞ

�
þHfield; (4a)

where u and v are constants composed of the mαs and qαs.
The single-atom Hamiltonian reads

HA ¼
X
α∈A

 
pα

2

2mα
þ qα
8πε0

X
β∈A
β≠α

qβ
jrα − rβj

!
: (4b)

It is this Hamiltonian (4a) that is usually taken as the
starting point of cavity QED. However, it is fraught with
the following problems: (i) the canonical momentum of the
atoms does not equal their kinetic momentum; furthermore,
as we mentioned, (ii) the presence of the A-square term,
which yields creation and annihilation of pairs of photons;
and finally, (iii) there appears an instantaneous electrostatic
interaction between remote atoms (Vdipole-dipole

Coulomb ) and an
interaction of a single dipole with its own induced surface
charges (Vdipole-self

Coulomb ). The former is influenced, while the
latter is created by the presence of the boundaries
(cf. Ref. [11], where the reader will find an example of
our present general procedure for a concrete geometry, but
a different treatment of the dipole approximation).
In free space, these weaknesses can be dissolved by

performing the Power-Zienau-Woolley transformation on
the minimal coupling Hamiltonian (2a) to the multipolar-
coupling gauge (cf. Ref. [12] Chap. IV.C). Here, inspired
by the free-space procedure, we elevate this transformation
onto a very general level, which allows for an arbitrary
domain D and boundaries ∂D, i.e., for a general cavity
QED scenario.

The transformation that we adopt is canonical, defined
by the type-2 generating function

G2 ≡
Z
D
d3rA · ðΠ0 þRPÞ þ

X
α

rα · p0
α; (5a)

which yields a displacement of the momenta

Π ¼ δG2

δA
¼ Π0 þRP; (5b)

pα ¼
∂G2

∂rα ¼ p0
α þ

∂
∂rα

Z
D
d3rA · P: (5c)

At this point, P is an arbitrary vector, and R is part of an
orthogonal projector decomposition of the identity

QþR ¼ idL2
0
; (6)

where L2
0 is the subspace of the Hilbert space L

2ðD;R3Þ of
square-integrable vector fields such that the elements of L2

0

satisfy the boundary condition that they are normal to the
boundaries

L2
0ðD;R3Þ≡ fv ∈ L2ðD;R3Þjv × nj∂D ¼ 0g; (7)

which is, of course, nothing else than the boundary
condition on the electric field (and, hence, the vector
potential) at a perfectly conducting surface.
In order that the transformation (5) be canonical,Rmust

be a projector onto the divergence-free subspace of L2
0

R∶L2
0 → kerðdiv0Þ; (8)

because this ensures that A in Eq. (5a) can be treated as
unconstrained. Here, div0 (and curl0 below) are the diver-
gence (and curl) operators over L2, with the domain
restricted to L2

0. The notation “ker” refers to the kernel
of the operator, that is, the set of such vectors as are mapped
onto zero by the operator. Hence, both the Coulomb-gauge
and the boundary conditions on A can be expressed by the
single condition that RA ¼ A.
The crucial result for us to build upon here is the

Helmholtz-Hodge decomposition of L2 [13,14], which
reads

where grad0 is the gradient operator over L2ðD;RÞ with its
domain restricted to such scalar fields v as vanish on the
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boundaries: vj∂D ¼ 0. The notation “ran” refers to the
range of the operator. In free space (D ¼ R3), ranðgrad0Þ ¼
kerðcurl0Þ (longitudinal fields) and ranðcurlÞ ¼ kerðdivÞ
(transverse fields) holds, and the direct sum of the two
makes up for the whole L2ðR3;R3Þ. For general domains,
however, the dimension of H2 is nonzero. The elements of
H2 are called cohomological fields, and, when the electric
field is in question, also capacitor fields. On the basis of
Eq. (9), we can assert that

L2
0 ¼ ranðgrad0Þ ⊕ kerðdiv0Þ: (10)

From this equation, together with Eq. (8), it follows that in
the decomposition of the identity in Eq. (6), theQ projector
must be defined as

Q∶L2
0 → ranðgrad0Þ; (11)

We recall that in free space Q [15] and R [16] project
onto the longitudinal and transverse components of vector
fields, respectively.
The transformed Hamiltonian reads

H0 ¼
X
α

1

2mα

�
p0
α þ

∂
∂rα

Z
D
d3rA · P − qαAðrαÞ

�
2

þ ε0
2

Z
D
d3rð∇UÞ2

þ ε0
2

Z
D
d3r

��
Π0 þRP

ε0

�
2

þ c2ð∇ ×AÞ2
�
: (12)

So far, we have not specified P. Since, according to Eq. (3),
the scalar potential is an element of the domain of grad0,
Eq. (11) allows us to impose the condition on P that

ε0∇U ¼ QP: (13)

Hence, on account of Eq. (6), the electrostatic term in the
second line of Eq. (12) and the term containing P2 in the
third line combine to give 1=ð2ε0Þ

R
D d3rP2.

Condition (13) is equivalent to [17]

∇ · P ¼ −ρ; (14)

which motivates us to identify the vector field P, so far
introduced on purely mathematical grounds, with the
physical notion of the polarization density.
Besides condition (13), the following condition on the

other orthogonal component of P,

∂
∂rα

Z
D
d3rA ·RP ¼ qαAðrαÞ; (15)

would make the first term of H0 simplify. However,
it is not known whether conditions (13) and (15) can be

simultaneously met in general. Nevertheless, we show that
in the special case of the electric-dipole approximation
to be performed in the next step, both conditions can be
satisfied.
At this point, we summarize that under condition (15),

the Hamiltonian would have the form

H0 ¼
X
α

p0
α
2

2mα
þ 1

2ε0

Z
D
d3rP2 − 1

ε0

Z
D
d3rD · PþH0

field;

(16)

where the kinetic term manifests the coincidence of the
canonical momentum p0

α with the kinetic momentum of
particle α, eliminating problem (i) listed after Eq. (4a). We
introduced the displacement field D≡ ε0Eþ P, about
which, given that Π ¼ ε0∂tA ¼ −RE, it holds that
Π0 ¼ −RD ¼ −D. The second equality holds because
of Eq. (14) and Gauss’s law. H0

field is formally equivalent
toHfield, only with the transformed field momentum instead
of the Coulomb-gauge one.
We now move from the description of point charges

towards that of atoms in this picture. The polarization field
is
P

APA, and since the atoms are spatially separated,

Z
D
d3rP2 ¼

X
A

Z
D
d3rP2

A; (17)

therefore, the first two terms of Hamiltonian (16) give the
internal energy of the atoms. In the electric-dipole approxi-
mation of atoms

PAðrÞ ¼
�X

α∈A
qαrα

�
δ<ðr − rAÞ≡ dAδ

<ðr − rAÞ; (18)

dA being the electric dipole moment of atom A. The
function δ< behaves as a delta function over a spatial
scale that is larger than the size of the atoms, while on the
intra-atomic scale it is defined such that condition (14)
be satisfied (clearly, for a nonzero dipole moment, the
charges cannot be at exactly the same position). With this
definition, condition (15) is met under our assumption
that AðrαÞ ¼ AðrAÞ.
With the two conditions being satisfied, we can proceed

from Hamiltonian (16) to obtain the electric-dipole
Hamiltonian in this picture

H0
ED ¼

X
A

�
HA

0 − dA ·
DðrAÞ
ε0

�
þH0

field; (19a)

where the single-atom Hamiltonian has the form

HA
0 ¼
X
α∈A

p0
α
2

2mα
þ 1

2ε0

Z
suppðPAÞ

d3rP2
A: (19b)
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In the second term, the domain of the integration can be
restricted to the support of PA, so that unless the atom is
very close to any of the boundary surfaces, the single-atom
Hamiltonian is not at all affected by the presence of the
boundaries. The intra-atomic Coulomb term [equivalent to
the second term of the Hamiltonian (4b)] can be recovered
from this same term, whereupon the remainder gives what
is usually termed the dipole self energy in this picture. This,
however, does not concern us here because our agenda is to
define the atomic levels in this picture simply on the basis
of the full single-atom Hamiltonian (19b). For all practical
purposes, the description of atoms is restricted to a few
selected discrete energy levels, which can be taken phe-
nomenologically from spectroscopic data. We note that the
“atom” is not a gauge-invariant concept. The phenomeno-
logical replacement of the atom with a simple level
structure (two-level, lambda, etc.) can be safely performed
in the gauge of the new Hamiltonian (19), because it is free
from the problems listed above. Here, (i) the canonical
momentum coincides with the kinetic one, (ii) the awkward
A-square term has disappeared, as have (iii) the two
Coulomb terms, describing atom-atom and atom-boundary
interaction. In H0

ED, the boundary enters only via the
displacement field D; hence, the atoms interact only via
the retarded radiation field.
For quantizing the theory, we introduce the transverse

modes as solutions to the constraint vectorial Helmholtz
equation [18]

∇×∇×ϕλ ¼
ω2
λ

c2
ϕλ; with ∇ ·ϕλ¼ 0 and ϕλ×nj∂D ¼ 0:

(20)

The vector potential A can be expanded in terms of these
(dimensionless) modes

A ¼
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ε0Vωλ

s
ðϕλaλ þ ϕ�

λa
†
λÞ; (21a)

where aλ is the annihilation operator of the corresponding
mode, ωλ is its frequency, and V is the volume of the
domain. This expansion is left invariant compared to the
Coulomb gauge. D is simply the canonical conjugate

D ¼ −Π0 ¼ i
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏε0ωλ

2V

r
ðϕλaλ − ϕ�

λa
†
λÞ: (21b)

We are now ready to systematically introduce the single-
mode approximation, which is fundamental to the standard
models of cavity QED (Dicke, Tavis-Cummings, Jaynes-
Cummings). Our analysis has shown that even in the case
of boundaries, when the possibility of a single-mode
approximation arises at all, we still need the full mode
expansion (20) for the cancellation of the A-square and the
dipole-dipole interaction terms. Once this is done, in the

new picture we can safely pick out one of the modes
ϕλ. This is at variance with the approaches of Refs. [2, 9].
In fact, the single mode approximation is much more
adequate in the new picture by principle, since in Coulomb
gauge, the A-square term couples all the modes.
Hence, when the atoms can be treated as two-level

systems, we obtain the Dicke model in the new picture

HDicke ¼
X
A

ℏðωAσ
ðAÞ
z þ gAðaþ a†ÞσðAÞx Þ þ ℏωa†a; (22)

where the three terms correspond one by one to the terms of
the exact microscopic Hamiltonian (19) in the same order
[19]. We can thus conclude that these simplified models are
better than generally expected.
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