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We compute the Coulomb correction to the total and diffractive cross sections for virtual photon
scattering off a heavy nucleus at low x. We show that it violates the geometric scaling in a wide range of
photon virtualities and is weakly x independent. In heavy nuclei at low Q2, the Coulomb correction to the
total and diffractive cross sections is about 20% and 40%, correspondingly.
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A pivotal property of the low x semi-inclusive deep
inelastic scattering (DIS) on proton and nuclear targets is
geometric scaling of the total γ�p and γ�A cross sections [1],
which means scaling with a dimensionless ratio Q2=Q2

sðxÞ,
where Q2 is photon virtuality, x is a Bjorken variable, and
Q2

sðxÞ is the saturation momentum. Geometric scaling—a
fundamental property of high-energy QCD [2]—is a most
clear manifestation of a highly coherent color field, which
has a typical transverse momentum scale QsðxÞ. In
Refs. [3–6], it was derived from the low x evolution
equation of QCD [7,8]. The coherent color field is made
up mostly of gluons, which cannot directly couple to the
virtual photon. Therefore, the leading DIS channel at low x
is a fluctuation of the virtual photon into a qq̄ pair, which is
a color and electric dipole, that subsequently interacts with
the color field of the target.
Predictions of the perturbation theory are most robust for

DIS off a heavy nucleus A ≫ 1, because α2sA1=3 ∼ 1 serves
as a convenient resummation parameter. Additionally, the
color field strength is boosted by a large factor A1=3. Thus,
DIS off a heavy nucleus is considered to be the best tool to
probe the low x nuclear structure and dynamics.
Experimental facilities capable of performing such experi-
ments, for example, the Electron Ion Collider (EIC), are
being actively developed.
A large-A nucleus also carries strong electric charge eZ.

The elastic scattering amplitude of the qq̄ dipole off the
nuclear Coulomb field is proportional αZ, which is of the
order of one for a heavy nucleus. Therefore, the cross
section for DIS off a heavy nucleus also receives a
substantial contribution from electromagnetic interactions
of the qq̄ dipole with the nucleus, which is known as the
Coulomb correction. Since the typical scale of the nuclear
electromagnetic field is obviously different from the
saturation momentum, the Coulomb correction violates
the geometric scaling. We will argue that this correction
is large at low x and smallQ2, which is precisely the region
that will be probed by the EIC and similar experiments. The
main goal of this Letter is to demonstrate the importance of
the Coulomb correction in DIS off heavy nuclei and to
investigate it as a function of Q2, x, and A. Non-negligible

Coulomb corrections at medium x were recently discussed
in Ref. [9].
Total cross section.—At low x the total γ�A cross section

can be expressed in terms of the total dipole-nucleus cross
section σ̂ as follows (see, e.g., [10]):

σT=Lðx;Q2Þ ¼ 1

4π

Z
1

0

dz
Z

d2rΦT=Lðr; zÞσ̂ðx; rÞ; (1)

where Q2 is the photon virtuality. The light-cone wave
functions for transverse and longitudinal polarizations of
photon are given by

ΦT ¼
X
f

2αNc

π
f½z2 þ ð1 − zÞ2�a2K2

1ðarÞþm2
fK

2
0ðarÞg;

(2)

ΦL ¼
X
f

2αNc

π
4Q2z2ð1 − zÞ2K2

0ðarÞ; (3)

respectively, wheremf is quark mass, z is the fraction of the
photon’s light-cone momentum carried by the quark, r is
the size of the qq̄ dipole in the transverse plane, and
a2 ¼ zð1 − zÞQ2 þm2

f. The relationship between the cross
section σ ¼ σT þ σL and F1, F2 structure functions is
nontrivial due to large Coulomb corrections to the leptonic
tensor [11].
In order to calculate the Coulomb correction to the total

γ�A cross section, we employ the Glauber-Mueller model
[12–14] which takes into account multiple scatterings of the
qq̄ dipole in the nucleus. Let Γs and Γem be QCD and QED
contributions, respectively, to the dipole-nucleon elastic
scattering amplitude. An average over the nucleus wave
function can be calculated by using the thickness function
TðbÞ as follows:

hΓs=emðbÞi ¼
1

A

Z
d2baTAðbaÞΓs=emðb − baÞ; (4)

where b and ba impact parameters of the dipole and a
nucleon, correspondingly. According to the optical theo-
rem, the dipole-nucleus cross section reads
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σ̂ ¼ 2

Z
d2bRef1 − exp ½−AhiΓsi − ZhiΓemi�g (5)

¼ 2

Z
d2bf1 − cos½ZhReiΓemi� exp½−AhImiΓsi�g; (6)

where we neglect a small real part of iΓs and a small
imaginary part of iΓem. Integrals in (4) and (5) can be
analytically calculated in a simple but quite accurate
“cylindrical nucleus” model (see, e.g., [15,16]), which
approximates the nuclear thickness function by the step
function, viz., TðbÞ ¼ 2RA if b < RA and zero otherwise.
The result is [17]

σ̂ðx; rÞ ¼ σ̂sðx; rÞ þ σ̂emðx; rÞ; (7)

σ̂sðx; rÞ ¼ 2πR2
A

�
1 − exp

�
− 1

4
~Q2
sðxÞr2

��
; (8)

σ̂emðx; rÞ ¼ 4πr2ðαZÞ2 ln W2

4m2
fmNRA

; (9)

where mN is nucleon mass, W is the γ�A center-of-mass
energy given by W2 ¼ Q2=xþm2

N, and ~Q2
s is the quark

saturation momentum.
The logarithm that appears in (9) is the result of

integration over the impact parameter from RA up to a
cutoff bmax, which delimits the region of validity of the
Weizsäcker-Williams approximation. It is given by
bmax ¼ maxfW2zð1 − zÞ=½mNðm2

q þ k2Þ�g, where k is the
quark’s transverse momentum [18]. The largest size of the
qq̄ dipole, corresponding to the smallest k, is ∼1=mf due to
the confinement. For that reason bmax, and hence (9),
depends on the constituent quark mass mf rather than on
the much smaller current quark mass mq.
Equations (7)–(9) are derived in the quasiclassical

approximation where the quark saturation momentum ~Q2
s ,

andhence theQCDcontribution to the total cross section, isx
independent. At lower x, such that αs lnð1=xÞ ∼ 1, the QCD
quantum evolution effects become important and are
described by the Balitsky-Kovchegov (BK) equation
[7,8]. It emerges from the solution to the BK equation that
the saturationmomentum acquires x dependence in the form
~Q2
s ∼ A1=3x−λ, where λ is a certain positive number [5]. The

functional form of the dipole cross section is also evolving
with x; (8) in that case is the initial condition. Several
phenomenological models were suggested to describe the
evolved dipole cross section. We will follow the Golec-
Biernat–Wusthof model [19] which retains the functional
form of (8) while it models the saturation momentum
according to (21). If we neglect the electromagnetic term
(9) and use (8) in (1), then we immediately observe that the
total γ�A cross section exhibits the geometric scaling. This is
because x dependence arises only through the combination

r2Q2
sðxÞ, and the dipole size r is determined by 1=Q

(for Q2 ≫ m2
f).

That the Coulomb correction violates the geometric
scaling is evident from (9) which, being an electromagnetic
contribution, does not depend on the strength of the
color field determined by ~Q2

s. Unlike the QCD term (8),
the QED one (9) does not evolve much with x. Indeed,
Γs=em ∼ ð1=xÞ1þΔs=em , where the interceptΔs=em incorporates
the evolution effect. In the leading-log order in QCD Δs ¼
4 ln 2ðαsNc=πÞ [20,21], while in QED Δem ¼ ð11=32Þπα2
[22,23]. Because Δem ≪ Δs we can neglect the effect of the
QED evolution.
Substituting (9) into (1) and integrating over r, we obtain

the following analytic expression for the Coulomb correc-
tion to the total γ�A cross section:

σem;T=L ¼ ðαZÞ2 ln W2

4m2
fmNRA

X
f

4αNc

3m2
f

gT=LðηÞ; (10)

where η ¼ Q=mf and

gTðηÞ ¼
�
4ðη4 þ 7η2 þ 8Þtanh−1

�
η

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4

p
η2 þ 2

�

−2η
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4

q
ðη2 þ 8Þ

�
½η3ðη2 þ 4Þ3=2�−1; (11)

gLðηÞ ¼ 4

�
η

ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4

q
ðη2 þ 6Þþ4ðη2 þ 3Þ

× ln
η − ffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 þ 4
p

ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 4

p
�
× ½η3ðη2 þ 4Þ3=2�−1: (12)

Obviously, (10) with (11) and (12) does not scale
with ~Q2

s=Q2.
The QCD contribution can be estimated analytically

only at very large and very small photon virtuality (as
compared to the saturation momentum). We derive the
following asymptotic expressions for the relative size of
electromagnetic contribution compared the total γ�A cross
section:

σem
σs

¼
8 ln Q2

m2
f

~Q2
sR2

A ln
Q2

~Q2
s

ðαZÞ2 ln W2

4m2
fmNRA

; (13)

when m2
f ≪ Q2

s ≪ Q2. This ratio increases logarithmi-
cally with Q2 but decreases at low x as xλ (modulo
logarithms). We therefore expect that in this kinematic
region electromagnetic interactions of the qq̄ are small at
very low x. The situation is remarkably different at
semihard momenta where the ratio of QED and QCD
contribution reads

PRL 112, 072001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

072001-2



σem
σs

¼
8 ln Q2

m2
f

Q2R2
A
ðαZÞ2 ln W2

4m2
fmNRA

; (14)

when m2
f ≪ Q2 ≪ ~Q2

s . We see that, since W2 ∼Q2=x, the
relative size of the electromagnetic contribution slowly
increases as lnð1=xÞ. Nuclear dependence of (13) is given
by Z2=A (modulo logarithms), while that of (14) by
Z2=A2=3, which indicates that in the saturation region
(14) the relative electromagnetic contribution is enhanced
by A1=3 as compared to the hard perturbative region (13).
The number of nucleons A increases with the number of
protons Z in a nucleus as A ¼ φðZÞZ, where ϕ ≈ 2–3 is a
slowly increasing function of Z. Therefore, the above
ratios are monotonically increasing functions of Z, indi-
cating the enhancement of the Coulomb correction for
heavy nuclei.
Diffractive cross section.—The total diffractive cross

section corresponds to elastic scattering of the color dipole
on the nucleus. It can be written as

σdiffT=Lðx;Q2Þ ¼ 1

4π

Z
1

0

dz
Z

d2rΦT=Lðr; zÞσ̂elðx; rÞ; (15)

where the total elastic dipole-nucleus cross section reads

σ̂elðx; rÞ ¼
Z

d2bj1 − exp ½−AhiΓsi − ZhiΓemi�j2: (16)

Following the same steps that led from (6) to (7)–(9)
(details can be found in Ref. [17]), we derive

σ̂elðx; rÞ ¼ σ̂els ðx; rÞ þ σ̂emðx; rÞ; (17)

where σ̂em is the QED contribution given by (9), while the
QCD contribution is

σ̂els ðx; rÞ ¼ πR2
A

�
1 − exp

�
− 1

4
~Q2
sðxÞr2

��
2

: (18)

Similarly to the total cross section, we find the following
asymptotic relations between the QCD contributions to the
total and diffractive cross sections:

σs ¼
ln Q2

~Q2
s

ln 2
σdiffs ; Q2 ≫ ~Q2

s (19)

σs ¼ 2σdiffs ; ~Q2
s ≫ Q2: (20)

Thus, the relative importance of the Coulomb correction in
the total cross section is larger than in the diffractive one.
Indeed, the QCD contribution to the diffractive cross
section is obviously smaller than the total one (being part
of it), while the QED contribution is the same.
Numerical analysis.—To obtain a quantitative estimate

of the Coulomb correction, we perform a numerical
calculation using (1)–(9) and (15)–(18). The saturation
momentum is parameterized according to the Golec-
Biernat–Wusthoff model [19] in which

~Q2
s ¼ Q2

0

�
x0
x

�
λ

; (21)

where Q0 ¼ 1 GeV, x0 ¼ 3.04 × 10−4, λ ¼ 0.288, and
effective proton radius Rp ¼ 3.1 GeV−1 are parameters
fitted to the low x DIS data. The nuclear radius is given by
RA ¼ RpA1=3. We sum over three light quark flavors with
constituent masses mf ¼ 140 MeV. Since W ¼ Q2=x, the
cross sections are functions of x and Q2.
The results are shown in Figs. 1–4. All qualitative

features agree with our analysis in the previous sections.
We can see in Figs. 1 and 4 that at low Q2 the QED
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FIG. 1. Ratio of QED and QCD contributions to the total γ�A
cross section at x ¼ 10−4 as a function of Q2 for silver (solid
line), gold (dashed line), and uranium (dotted line) nuclei.
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FIG. 2. Ratio of QED and QCD contributions to the total γ�A
cross section as a function of Q2 for a gold nucleus at x ¼ 10−2
(solid line), x ¼ 10−3 (dashed line), and x ¼ 10−4 (dotted line).
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FIG. 3. Ratio of QED and QCD contributions to the total (solid
line) and diffractive (dashed) γ�A cross section as a function of x
for a gold nucleus at Q2 ¼ 1 GeV2.

PRL 112, 072001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

072001-3



correction for a uranium nucleus at x ¼ 10−4 can be as
large as 20% in the total cross section and over 40% in the
diffractive one. It is remarkable that the Coulomb correc-
tion is non-negligible even at high Q2. In the diffractive
cross section, shown in Fig. 4, its relative size even
increases with Q2, which can be traced back to the extra
logQ2 in (19); see (13). One should, however, take the
results of our calculation at high Q2 with a grain of salt, as
the model we are using does not properly account for the
Dokshitzer-Gribov-Lipatov-Altareli-Parisi (DGLAP) evo-
lution. A more accurate estimate at highQ2 can be obtained
with the model of Ref. [24]. As expected, the relative size
of Coulomb corrections increases with the nuclear weight
and weakly depends on x.
Summary.—Results presented in this work indicate that

Coulomb corrections play an important role in the low x
DIS off heavy nuclei in a very wide range of Q2 and x.
More refined estimates should use realistic nuclear profiles
and sophisticated low x evolution models. However, they
will not change our main conclusion that, in order to
reliably extract information about the cold nuclear matter
structure from the proposed electron-ion collision experi-
ments, one should have the Coulomb correction under
control.
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line), gold (dashed line), and uranium (dotted line).
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