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We consider a mixed system of Dirac fermions in a general parity-nonconserving theory and renormalize
the propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses
are identified with the complex pole positions and the wave-function renormalization (WFR) matrices
are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. We present
closed analytic all-order expressions and their expansions through two loops for the renormalization
constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized
self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor
transitions. We identify residual degrees of freedom in the WFR matrices and propose an additional
renormalization condition to exhaust them. We then explain how our results may be generalized to the
case of unstable fermions, in which we encounter the phenomenon of WFR bifurcation. In the special
case of a solitary unstable fermion, the all-order-renormalized propagator is presented in a particularly
compact form.
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The experiments at the CERN Large Hadron Collider
have radically changed the landscape of particle physics.
In fact, a new weak neutral resonance, which very much
looks like the missing link of the standard model (SM), has
been discovered [1], while, despite concerted endeavors by
armies of experimental and theoretical physicists, no signal
of new physics beyond the SM has emerged so far. Within
the present experimental precision, this new particle shares
the spin, parity, and charge-conjugation quantum numbers
JPC ¼ 0þþ and the coupling strengths with the SM Higgs
boson H, and its mass ð125:6� 0.3Þ GeV lies well inside
the MH range predicted within the SM through global
analyses of electroweak (EW) precision data, and it almost
perfectly coincides with state-of-the-art determinations of
theMH lower bound, ð129:6� 1.5Þ GeV, from the require-
ment that the SM vacuum be stable way up to the scale of
the Planck mass [2]. If the pole mass mt of the top quark,
which, in want of a rigorous determination at the quantum
level, is presently identified with a Monte Carlo parameter
[3], were just lower by an amount of the order of its total
decay width Γt ¼ ð2.0� 0.5Þ GeV [3], then the agreement
would be perfect, implying that EW symmetry breaking is
likely to be determined by Planck-scale physics. In a way,
this would solve the longstanding hierarchy problem of
the SM.
Obviously, nature is telling us that the SM is more robust

and fundamental than commonly accepted in recent years.
This provides a strong motivation for us to deepen and
complete our understanding of the field-theoretic founda-
tions of the SM. After all, we are dealing here with a
renormalizable quantum field theory [4]. The Nobel prize
in physics 1999 was awarded to ’t Hooft and Veltman for
elucidating the quantum structure of EW interactions in

physics. The on-shell renormalization of the SM was
established to all orders of perturbation theory using the
algebraicmethod [5].However, all particleswere assumed to
be stable, neutrinos were taken to be massless, and quark
flavor mixing was neglected. To eliminate these unrealistic
assumptions, one needs to develop a pole scheme of mixing
renormalization for unstable particles valid to all orders.
Apart frombeing conceptually desirable, this is becoming of
major phenomenological importance, evenmore so because
mixing and instability of elementary particles concur in nature.
This requires generalized concepts for flavor-changing
propagators and vertices. In the SMwithmassless neutrinos,
these are the propagator matrices of the up- and down-type
quarks and their charged-current vertices, which involve the
Cabibbo-Kobayashi-Maskawa (CKM) [6] quark mixing
matrix. This pattern carries over to the lepton sector if the
neutrinosaremassiveDirac fermions, and theanalogueof the
CKMmatrix is the Pontecorvo-Maki-Nakagawa-Sakata [7]
neutrino mixing matrix.
The renormalization of fermion mixing matrices was

treated in Ref. [8] and the references cited therein. As
for the renormalization of propagator matrices of mixed
systems of fermions, the situation is as follows. In Ref. [9],
an early treatment of finite renormalization effects both for
quarks in hadronic bound states and leptons may be found.
In Ref. [10], the ultraviolet (UV) renormalization of the
fermion masses was considered, and the pole masses were
shown to be gauge independent to all orders in the SM
using Nielsen identities [11], both for stable and unstable
fermions. In Ref. [12], the UV renormalization of the
fermion fields was discussed for the case of stability,
and the dressed propagator matrices were written in closed
form, both for the unrenormalized and renormalized

PRL 112, 071603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

0031-9007=14=112(7)=071603(5) 071603-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.071603
http://dx.doi.org/10.1103/PhysRevLett.112.071603
http://dx.doi.org/10.1103/PhysRevLett.112.071603
http://dx.doi.org/10.1103/PhysRevLett.112.071603


versions. Furthermore, it was explicitly proven that the
WFR conditions proposed in Ref. [13] guarantee the unit-
residue properties of the diagonal elements of the renor-
malized propagator matrix to all orders, in compliance with
the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formalism [14]. The purpose of this Letter is to construct
closed analytic expressions for the mass counterterms and
WFR matrices without resorting to perturbation theory and
to generalize the treatment to unstable fermions. Strictly
speaking, unstable particles are not entitled to appear in
asymptotic states of scattering amplitudes in quantum field
theory. However, in numerous applications of significant
phenomenological interest, the rigorous compliance with
this tenet would immediately entail a proliferation of
external legs and bring the evaluation of radiative correc-
tions to a grinding halt, the more so as almost all the known
elementary particles are unstable.
We consider a system of N unstable Dirac fermions

in the context of some general parity-nonconserving
renormalizable quantum field theory with intergeneration
mixing, such as the up-type or down-type quarks in the SM.
We start from the bare theory and assume that the mass
matrix has already been diagonalized. The bare masses m0

i ,
where i ¼ 1;…; N is the generation index and the super-
script 0 labels bare quantities, are real and non-negative to
ensure the reality of the action and the absence of tachyons,
respectively. For the sake of a compact notation, we group
the bare quantum fields ψ0

i ðxÞ into a column vector Ψ0ðxÞ.
In momentum space, the unrenormalized propagator matrix
is defined as iPðpÞ ¼ R

d4xeip·xh0jT½Ψ0ðxÞΨ̄0ð0Þ�j0i,
where T is the time-ordered product, Ψ̄0ðxÞ ¼ ½Ψ0ðxÞ�†γ0,
and a tensorial product both in the spinor and generation
spaces is implied. Its inverse is built up by the one-particle-
irreducible Feynman diagrams contributing to the transi-
tions j → i and takes the form

P−1ðpÞ ¼ p −M0 − ΣðpÞ; (1)

where M0
ij ¼ m0

i δij and ΣðpÞ is the unrenormalized self-
energy matrix. Here, and in the following, repeated indices
are not summed over unless indicated by a summation
symbol. Lorentz covariance entails

ΣðpÞ ¼ ½pBþðp2Þ þ Aþðp2Þ�aþ þ ðþ↔−Þ; (2)

where a� ¼ ð1� γ5Þ=2 are the chiral projection operators
and ½A�ðp2Þ�ij and ½B�ðp2Þ�ij are Lorentz invariants. The
latter may be calculated from the bare Lagrangian order
by order in perturbation theory. However, we refrain from
resorting to perturbative expansions so as to render our
results valid to all orders. Defining

S�ðp2Þ ¼ 1 − B�ðp2Þ; T� ¼ M0 þ A�ðp2Þ; (3)

Eq. (1) becomes

P−1ðpÞ ¼ ½pSþðp2Þ − Tþðp2Þ�aþ þ ðþ↔−Þ: (4)

Performing the Dyson resummation [15] is equivalent to
inverting Eq. (4) and yields [12]

PðpÞ¼½pþD−ðp2Þ�S−1− ðp2Þ½p2−E−ðp2Þ�−1aþþðþ↔−Þ
¼aþ½p2−Fþðp2Þ�−1S−1þ ðp2Þ½pþCþðp2Þ�þðþ↔−Þ;

(5)

with the shorthand notations

C�ðp2Þ ¼ T∓ðp2ÞS−1∓ ðp2Þ; D�ðp2Þ ¼ S−1∓ ðp2ÞT�ðp2Þ;
E�ðp2Þ ¼C�ðp2ÞC∓ðp2Þ; F�ðp2Þ ¼D∓ðp2ÞD�ðp2Þ;

(6)

where S−1� ðp2Þ ¼ P∞
n¼0 B

n
�ðp2Þ is a geometric series.

In the following, we shall exploit several times the
following theorem for n × n matrices A (for a proof, see,
e.g., Ref. [16]):

AðadjAÞ ¼ ðadjAÞA ¼ ðdetAÞ1; (7)

where ðadjAÞij ¼ Cji with Cij being the cofactor of Aij, i.e.,
ð−1Þiþj timesthedeterminantoftheðn − 1Þ × ðn − 1Þmatrix
obtained by deleting the ith row and the jth column of A. If
det A ≠ 0, then Eq. (7) implies that A−1 ¼ ðadjAÞ=ðdet AÞ.
Since the four matrices [p2 − E�ðp2Þ] and [p2 − F�ðp2Þ]
are related by similarity transformations, their determinants
coincide. Owing to Eq. (7), the individual propagator parts
in Eq. (5) thus all have their poles at the same (complex)
positions p2 ¼ M2

i , which are the zeros of any of the secular
equations [9,10,12]

det½M2
i − E�ðM2

i Þ� ¼ det½M2
i − F�ðM2

i Þ� ¼ 0: (8)

Here, Mi is the complex pole mass of fermion i, which is
related to the real pole mass mi and total decay width Γi
as [17,18]

Mi ¼ mi − i
Γi

2
: (9)

In the pole renormalization scheme, Mi serve as the renor-
malized masses; i.e., the mass counterterms δMi are fixed by

m0
i ¼ Mi þ δMi: (10)

We now turn to the WFR. We first assume that all the
fermions are stable, with Γi ¼ 0; i.e., their mass shells p2 ¼
m2

i lie below the thresholds of ½A�ðp2Þ�ij and ½B�ðp2Þ�ij,
where the absorptive parts of the latter vanish. The WFR is
implemented by writing

Ψ0ðxÞ ¼ Z1=2ΨðxÞ; (11)

where ΨðxÞ is the renormalized field multiplet and
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Z1=2 ¼ Z1=2
þ aþ þ Z1=2− a− (12)

is the WFR matrix. Using Eq. (11), we may
express the renormalized propagator matrix iP̂ðpÞ ¼R
d4xeip·xh0jT½ΨðxÞΨ̄ð0Þ�j0i in terms of the unrenormal-

ized one as

P̂ðpÞ ¼ Z−1=2PðpÞZ̄−1=2; (13)

where

Z̄1=2 ¼ γ0Z†1=2γ0 ¼ a−Z†1=2
þ þ aþZ†1=2− : (14)

We may absorb the WFR matrices in Eq. (13) by intro-
ducing renormalized counterparts of S� and T� in Eq. (3),

Ŝ�ðp2Þ ¼ Z†1=2
� S�ðp2ÞZ1=2

� ;

T̂�ðp2Þ ¼ Z†1=2∓ T�ðp2ÞZ1=2
� :

(15)

Feeding Eq. (15) into Eq. (6), we are thus led to define

Ĉ�ðp2Þ ¼ T̂∓ðp2ÞŜ−1∓ ðp2Þ ¼ Z†1=2
� C�ðp2ÞZ†−1=2∓ ;

D̂�ðp2Þ ¼ Ŝ−1∓ ðp2ÞT̂�ðp2Þ ¼ Z−1=2∓ D�ðp2ÞZ1=2
� ;

Ê�ðp2Þ ¼ Ĉ�ðp2ÞĈ∓ðp2Þ ¼ Z†1=2
� E�ðp2ÞZ†−1=2

� ;

F̂�ðp2Þ ¼ D̂∓ðp2ÞD̂�ðp2Þ ¼ Z−1=2
� F�ðp2ÞZ1=2

� : (16)

The renormalized counterparts of Eqs. (4) and (5) then
simply emerge by placing carets. From Eq. (16), we learn
that the matrices Ê�ðp2Þ and E�ðp2Þ are similar, which
implies that det½p2 − Ê�ðp2Þ� ¼ det½p2 − E�ðp2Þ� and
similarly for F̂�ðp2Þ and F�ðp2Þ. Hence, the pole positions
M2

i fixed by Eq. (8) are not affected by the WFR [10].
In accordance with the LSZ reduction formalism [14],

we determine Z1=2 by requiring that, if the mass shell of a
fermion is reached, the respective diagonal element of the
renormalized propagator matrix resonates with unit residue,
while the other elements stay finite; i.e.,

½P̂ðpÞ�ij ¼
δinδnj
p −Mn

þOð1Þ; (17)

in the limit p2 → M2
n. For Γi ¼ 0, this may be achieved by

imposing the on-shell WFR conditions [13],

½P̂−1ðpÞ�ijuðp⃗;MjÞ ¼ 0; (18)

ūðp⃗;MiÞ½P̂−1ðpÞ�ij ¼ 0; (19)

�
1

p −Mi
½P̂−1ðpÞ�ii

�
uðp⃗;MiÞ ¼ uðp⃗;MiÞ; (20)

ūðp⃗;MiÞ
�
½P̂−1ðpÞ�ii

1

p −Mi

�
¼ ūðp⃗;MiÞ; (21)

for all i, j ¼ 1;…; N, where uðp⃗;MiÞ is a four-component
spinor satisfying the Dirac equation ðp −MiÞuðp⃗;MiÞ ¼ 0
and ūðp⃗;MiÞ ¼ ½uðp⃗;MiÞ�†γ0. For Γi ¼ 0, an explicit
proof that Eqs. (18)–(21) entail Eq. (17) may be found
in Sec. III of Ref. [12]. Equations (18)–(20) imply that

0 ¼ ½Ŝ∓ðM2
jÞ�ijMj − ½T̂�ðM2

jÞ�ij; (22)

0 ¼ Mi½Ŝ�ðM2
i Þ�ij − ½T̂�ðM2

i Þ�ij; (23)

1 ¼ ½ŜþðM2
i Þ�ii þM2

i f½Ŝ0þðM2
i Þ�ii þ ½Ŝ0−ðM2

i Þ�iig
−Mif½T̂ 0þðM2

i Þ�ii þ ½T̂ 0−ðM2
i Þ�iig; (24)

respectively, while Eq. (21) is redundant. Equation (20)
also implies that ½ŜþðM2

i Þ�ii ¼ ½Ŝ−ðM2
i Þ�ii, which, however,

already follows from Eqs. (22) and (23) for i ¼ j.
We now solve Eqs. (22)–(24) exactly for Mi, Z1=2, and

Z†1=2, without recourse to perturbation theory. Multiplying
Eq. (22) by ½Ŝ−1∓ ðM2

jÞ�ki from the left, summing over i,
iterating the outcome, and proceeding analogously with
Eq. (23), we obtain the following eigenvalue equations:

½F�ðM2
jÞZ1=2

� �
ij
¼ ðZ1=2

� ÞijM2
j ;

½Z†1=2
� E�ðM2

i Þ�ij ¼ M2
i ðZ†1=2

� Þij: (25)

With the aid of Eqs. (7) and (8), we find solutions of the form

ðZ1=2
� Þij ¼ M�

ijλ
�
j ; ðZ†1=2

� Þij ¼ λ̄�i M̄
�
ij; (26)

where λ�i and λ̄�i are constants yet to be determined and

M�
ij ¼ fadj½M2

j − F�ðM2
jÞ�gij;

M̄�
ij ¼ fadj½M2

i − E�ðM2
i Þ�gij: (27)

Substituting Eq. (26) into Eqs. (22) and (23) with i ¼ j and
Eq. (24), we have

Miλ̄
þ
i s

þ
i λ

þ
i ¼ Miλ̄

−
i s

−
i λ

−
i ¼ λ̄−i tþi λþi ¼ λ̄þi t

−
i λ

−
i ; (28)

λ̄þi s
þ
i λ

þ
i þM2

i ðλ̄þi sþ0
i λþi þ λ̄−i s−0i λ−i Þ

−Miðλ̄−i tþ0
i λþi þ λ̄þi t

−0
i λ−i Þ ¼ 1; (29)

where

s�i ðp2Þ¼ ½M̄�S�ðp2ÞM��ii; t�i ðp2Þ¼ ½M̄∓T�ðp2ÞM��ii;
(30)

andp2 ¼ M2
i is impliedwhenever theargumentsareomitted.

From Eq. (28), we obtain

M2
i ¼ fiðM2

i Þ; (31)

where
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fiðp2Þ ¼ tþi ðp2Þt−i ðp2Þ
sþi ðp2Þs−i ðp2Þ : (32)

Factoring out λ̄þi s
þ
i λ

þ
i in Eq. (29) and using Eqs. (28), (31),

and (32), we find

λ̄þi s
þ
i λ

þ
i ½1 − f0iðM2

i Þ� ¼ 1: (33)

Using Eq. (26) for i ¼ j and Eq. (28), we arrive at

ðZ†1=2
� ÞiiðZ1=2

� Þii ¼
M̄�

iiM
�
ii

s�i ½1 − f0iðM2
i Þ�

; (34)

ðZ†1=2∓ ÞiiðZ1=2
� Þii ¼

MiM̄
∓
ii M

�
ii

t�i ½1 − f0iðM2
i Þ�

: (35)

The nondiagonal entities are then fixed by Eq. (26) to be

ðZ1=2
� Þij¼

M�
ij

M�
jj
ðZ1=2

� Þjj; ðZ†1=2
� Þij¼ðZ†1=2

� Þii
M̄�

ij

M̄�
ii
: (36)

Owing to our assumption Γi ¼ 0, the bare propagator
matrix satisfies the pseudo-Hermiticity condition
γ0P†ðpÞγ0 ¼ PðpÞ [13], which implies that A†

�ðp2Þ ¼
A∓ðp2Þ and B†

�ðp2Þ ¼ B�ðp2Þ [19,20]. Hence, we have
F†
�ðp2Þ ¼ E�ðp2Þ, ðM�Þ† ¼ M̄�, ½s�i ðp2Þ�� ¼ s�i ðp2Þ,

½t�i ðp2Þ�� ¼ t∓i ðp2Þ, and ½fiðp2Þ�� ¼ fiðp2Þ. Consequently,
the right-hand side of Eq. (34) is real, as required by the
left-hand side being jðZ1=2

� Þiij2, and complex conjugation of
Eq. (35) entails a flip of the alternating-sign labels on both
sides. Furthermore, Eqs. (31) and (34)–(36) are consistent
with each other. For each value of i, Eqs. (34) and (35)
provide four real equations for the four real unknowns
ReðZ1=2

� Þii and ImðZ1=2
� Þii. However, one of these equations

is redundant due to Eq. (31). We may exhaust this residual
freedom by choosing, e.g., ðZ†1=2

þ Þii ¼ ðZ1=2
þ Þii, as in

Ref. [19]. This freedom does not affect Eq. (17). In fact,
Eqs. (31) and (34)–(36) are valid to all orders. At one loop,
they agreewithEqs. (3.13) and (3.15)–(3.17) inRef. [19] and
with Eqs. (3.3), (3.4), (4.3), and (4.4) in Ref. [20]. At two
loops, Eq. (31) coincides with Eq. (23) in Ref. [12], which
was found there by directly solving Eq. (8).
We now allow for some or all of the fermions to be

unstable, releasingMi to complex values. This immediately
leads to contradictions because the right-hand side of
Eq. (34) is no longer real and that of Eq. (35) no longer
flips the alternating-sign labels upon complex conjugation,
while the left-hand sides still possess these properties.
This problem may be cured by allowing the WFR matrices
of the in and out states to bifurcate when Γi increase to
assume their physical values, as was already noticed in the
pioneering one-loop analysis of Ref. [20]. This amounts to
abandoning the first equality in Eq. (14) and replacing
everywhere Z†

� by Z̄�, say. Since the above manipulations

of Eq. (13) actually never rely on the relationship between
Eqs. (12) and (14), the derivation of Eqs. (31) and (34)–(36)
carries over without further ado, and so does the proof [12]
that Eqs. (18)–(21) guarantee Eq. (17). For each value of i,
Eqs. (34) and (35) now provide four complex equations
for the four complex unknowns ðZ1=2

� Þii and ðZ̄1=2
� Þii.

However, one of these equations is redundant, and we
may express any three of the unknowns in terms of the
fourth one. We may exploit this liberty, e.g., by identifying
ðZ̄1=2

þ Þii ¼ ðZ1=2
þ Þii. Again, this does not affect Eq. (17).

From Eqs. (10) and (31), we obtain the all-order mass
counterterms as

δMi ¼ m0
i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

: (37)

Using also Eq. (9), we have

mi ¼ Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

¼ m0
i − ReδMi; (38)

−Γi

2
¼ Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

¼ −ImδMi: (39)

Expanding the building blocks of Eqs. (31) and
(34)–(36) through Oðα2Þ, we find

fiðp2Þ ¼ ½Tþðp2Þ�ii½T−ðp2Þ�ii
½Sþðp2Þ�ii½S−ðp2Þ�ii

þm0
i ½τþi ðp2Þ þ τ−i ðp2Þ�

− ðm0
i Þ2½σþi ðp2Þ þ σ−i ðp2Þ� þOðα3Þ;

s�i ðp2Þ
M̄�

iiM
�
ii
¼ ½S�ðp2Þ�ii þ σ�i ðp2Þ þOðα3Þ;

t�i ðp2Þ
M̄∓

ii M
�
ii
¼ ½T�ðp2Þ�ii þ τ�i ðp2Þ þOðα3Þ;

M�
ji

M�
ii
¼ f�ijið1þ f�ijjÞ þ

X
i≠k≠j

f�ijkf
�
iki þOðα3Þ;

M̄�
ij

M̄�
ii
¼ e�iijð1þ e�ijjÞ þ

X
i≠k≠j

e�iike
�
ikj þOðα3Þ; (40)

for j ≠ i, where

σ�i ðp2Þ ¼
X
j≠i

fe�iijf�iji − e�iij½B�ðp2Þ�ji − ½B�ðp2Þ�ijf�ijig;

τ�i ðp2Þ ¼
X
j≠i

fe∓iijm0
jf

�
iji þ e∓iij½A�ðp2Þ�ji

þ ½A�ðp2Þ�ijf�ijig;

f�ijk ¼
½F�ðM2

i Þ�jk −M2
jδjk

M2
i −M2

j
ðj ≠ iÞ;

e�ijk ¼
½E�ðM2

i Þ�jk − δjkM2
k

M2
i −M2

k

ðk ≠ iÞ: (41)
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We now consider the special case of a single unstable
fermion, in which Eqs. (31) and (34)–(36) collapse and
uniquely determine the renormalized propagator to be

P̂ðpÞ ¼
�
pþM

SþðM2Þ
Sþðp2Þ

T−ðp2Þ
T−ðM2Þ

�
S−ðM2Þ
S−ðp2Þ

×
1 − f0ðM2Þ
p2 − fðp2Þ aþ þ ðþ↔−Þ; (42)

where fðp2Þ ¼ Tþðp2ÞT−ðp2Þ=½Sþðp2ÞS−ðp2Þ� and
M2 ¼ fðM2Þ. Evidently, Eq. (42) has unit residue at the
physical pole p ¼ M. We note that Eq. (42) slightly differs
from Eq. (36) in Ref. [18], where a renormalization scheme
without WFR bifurcation was employed.
Apart from being conceptually interesting in their own

right, our results have a number of important phenomeno-
logical applications, of which we mention but three below.
First, in the perturbative treatment of a specific particle
scattering or decay process involving unstable fermions,
such as top-quark production and decay, Eqs. (31) and
(34)–(36) may be readily employed, after expansion
through the considered order and truncation of terms
beyond that order. Second, the total decay width Γi, e.g.,
that of the top quark, may be conveniently evaluated
through any order from ½A�ðp2Þ�ij and ½B�ðp2Þ�ij by
solving Eq. (39) iteratively. Third, Eqs. (10) and (37)
may be used to switch from the pole scheme adopted here
to any other scheme of mass renormalization, as long as the
method of regularization is maintained, exploiting the
scheme independence of m0

i . In this way, the MS [21]
definition of mass may be naturally extended from QCD to
the EW sector, as

m̄i ¼ mi þ ðReδMiÞMS; (43)

where ðReδMiÞMS is the UV-finite remainder of ReδMi
after MS subtraction of the poles in ε ¼ 2 − d=2 at
renormalization scale μ, where d is the dimensionality of
space time in dimensional regularization [22]. In sponta-
neouslybrokengauge theories, such as theSM, it is necessary
to include the tadpole contributions in ðReδMiÞMS in
order for m̄i to be gauge independent [23]. In the case of
the top quark, the accumulated QCD contribution to
ðReδMtÞMS from orders OðαnsÞ with n ¼ 1, 2, 3, which
renders m̄t at μ ¼ mt approximately 10GeV smaller thanmt,
happens to be almost perfectly compensated by the EW
contribution from orders Oðααns Þ with n ¼ 0, 1 for MH ≈
126 GeV [24].
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