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We discuss the dc conductivity of holographic theories with translational invariance broken by a
background lattice. We show that the presence of the lattice induces an effective mass for the graviton via a
gravitational version of the Higgs mechanism. This allows us to obtain, at leading order in the lattice
strength, an analytic expression for the dc conductivity in terms of the size of the lattice at the horizon. In
locally critical theories this leads to a power law resistivity that is in agreement with an earlier field theory
analysis of Hartnoll and Hofman.
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Introduction.—Here’s a simple question. Take a quantum
field theory at nonzero temperature and finite background
charge density. What is the resistance of such a system to a
dc current?
If the field theory has translational invariance, this simple

question has a simple answer: the resistance is zero and the
material is a perfect conductor. This is true for trivial
reasons. Translational invariance implies momentum con-
servation which, in turn, means that there is no mechanism
to dissipate the current. To extract something more inter-
esting, we have to work a little harder and introduce effects
that break the translational symmetry such as impurities or
a background lattice.
Progress can be made if the breaking of translational

invariance does not change the infrared fixed point of the
theory. This means that, from the IR perspective, the effects
can be captured by the addition of irrelevant operators O to
the Hamiltonian, H ¼ H0 þ ϵOðkLÞ, where kL is the
characteristic momentum of the underlying lattice or
impurity. It was shown in [1,2] that such an interaction
gives rise to momentum relaxation rate, Γ, and hence
resistivity, given by the retarded Green’s function,

Γ ∼ ϵ2k2L lim
ω→0

ImGR
OOðω; kLÞ
ω

: (1)

This is an interesting formula. Because it involves the
spectral density of the operatorO at momentum kL, if there
is to be any significant momentum dissipation—say,
enough to give the resistivity ρ a power-law dependence
on temperature T—then there must be low-energy ω → 0
excitations at momentum kL. If not, the relaxation rate will
be Boltzmann suppressed.
Fermi surfaces provide a natural context in which one

has light degrees of freedom at finite momentum. Such
modes are simply electrons scattering across the Fermi
surface with a net momentum transfer. Applying (1), with
the operator O taken to be the four-fermion Umklapp

operator, reproduces the well known ρ ∼ T2 behavior of the
resistivity of Fermi liquid theory.
There is another, more exotic, way to get low-energy

modes at finite momentum. At critical points, excitations
have a typical dispersion relations ω ∼ kz, with z the
dynamical exponent. In the limit z → ∞, this dispersion
relation broadens out. Such theories are known as locally
critical and arise naturally in the framework of holography
in the guise of infrared AdS2 regions of spacetime. In such
theories, time scales but space does not and the dimension
of an operatorOðkLÞ is dependent on the momentum kL. In
[2], Hartnoll and Hofman showed that, when applied to
such local critical theories, the formula (1) gives a power-
law resistivity,

ρ ∼ T2ΔkL ; (2)

where the exponent, ΔkL is the frequency space scaling
dimension of the operator and depends on the lattice
spacing kL.
The arguments of [2] sketched above are purely field

theoretic. Given that locally critical theories arise naturally
in holography, one can also try to derive the scaling (2)
using holographic methods alone. The appropriate holo-
graphic lattices were introduced in [3] where Einstein’s
equations were solved numerically (see also [4–6] for
related work). Here strong evidence was presented that
the dc conductivity indeed obeys (2) with O given by the
charge density. However, this evidence relied heavily on
numerics. The purpose of the present Letter is, in part, to
gain an analytic understanding of this scaling behavior in a
purely holographic framework. Before describing this,
there is another thread that we would like to weave into
the discussion.
A different approach to incorporating momentum dis-

sipation in holographic models was introduced in [7]. The
basic idea is straightforward: momentum conservation in
the boundary theory follows from diffeomorphism
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invariance in the bulk. If you want to model a theory
without momentum conservation, you need to consider a
bulk theory without diffeomorphism invariance. Such
theories usually go by the name of massive gravity.
The closet of massive gravity contains both skeletons

and ghosts. There has been recent progress in constructing
a (seemingly) consistent theory of a propagating massive
spin 2 particle [8]. However, in the context of holographic
massive gravity, life is likely to be somewhat easier. To
capture momentum dissipation, you only need to give a
mass to the gravitons with polarisation parallel to the
boundary. This means that the bulk theory retains diffeo-
morphism invariance in both time and radial directions. In
particular, since the timelike components of the graviton do
not get a mass, it seems likely that the constraints imposed
by ghosts are much weaker, if not completely absent.
The appeal of massive gravity is that, in contrast to

explicit lattices or impurities, it is analytically tractable.
Moreover, various aspects of thermodynamics and trans-
port in holographic massive gravity have been explored and
give encouragingly sensible answers. The low-frequency
optical conductivity exhibits a Drude peak [7,9], with the
momentum relaxation rate of the boundary theory deter-
mined by the graviton mass [9,10]. In particular, a universal
formula for the dc conductivity was presented in [10]. This
formula, which holds at finite temperature and chemical
potential, relates the resistivity of the boundary field theory
to the mass of the graviton evaluated on the horizon of the
bulk black hole.
Massive gravity provides a phenomenological way to

implement momentum dissipation in holography. But its
microscopic origins remain mysterious and it is unclear
how one can derive it from better motivated models. A
second goal of this Letter is to shed some light on this.
The purpose of this letter is to draw these threads

together. We start by considering Einstein-Maxwell theory
in AdS4, coupled to a neutral scalar field. Translational
invariance is broken by introducing a spatially modulated
source for the scalar; this is precisely the setup studied in
[3]. However, rather than solving the bulk equations
numerically, we instead work perturbatively in the strength
of the background lattice. We will see that, to leading order,
the bulk conductivity calculation simplifies tremendously,
with only a handful of fields responding to an applied
electric field on the boundary.
Foremost among the bulk modes is a phonon—a

Goldstone boson arising from the lattice. Because of bulk
diffeomorphism invariance, this phonon is eaten by the
metric to give an extra propagating graviton degree of
freedom. The net result is a Higgs mechanism for gravity,
with the graviton gaining a radially-dependent effective
mass, determined by the profile of the bulk lattice. We will
show that the equations describing the perturbations of the
holographic lattice coincide with those arising from mas-
sive gravity. This allows us to import the result of [10],

relating the resistivity to the mass of the graviton at the
black hole horizon. Our punch line is that this formula
reproduces the expected temperature dependence that arises
from (2) in locally critical theories.
The holographic lattice.—We work with the familiar

Einstein-Maxwell theory in d ¼ 3þ 1 dimensions with
negative cosmological constant. To this we add to a neutral
scalar field, ϕ, of massm2 ≤ 0 so that this field corresponds
to a relevant or marginal operator, O, in the boundary
theory.
The workhorse solution for applications of holography is

the Reissner-Nordström black hole, describing the boun-
dary field theory at temperature T and chemical potential μ.
This will be our starting point. When T ≪ μ, it is well
known that the solution asymptotes to an AdS2 ×R2

geometry in the infrared. This reflects the fact that the
boundary theory flows to a locally critical fixed point.
We now break translational invariance by introducing a

spatially modulated source for the operator O. For static
solutions the scalar field can be expanded near the
boundary as

ϕ0ðr; x; yÞ ∼ ϕ−ðx; yÞ
�
r
L

�
Δ− þ ϕþðx; yÞ

�
r
L

�
Δþ þ � � � ; (3)

where Δ� ¼ 3=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4þm2L2

p
. For technical simplic-

ity, we will work with the standard quantisation which
means that we impose a source by fixing the leading falloff,
ϕ−. Here we choose to work with the striped source ϕ− ¼
ϵ cosðkLxÞ where ϵ is a small number that allows us to treat
the lattice perturbatively. Turning on this source is equiv-
alent to turning on a spatially modulated potential in the
boundary theory, somewhat analogous to the optical lattices
in cold atom experiments. As usual the subleading falloff,
ϕþ, has the interpretation of the expectation value of the
dual operator O in the boundary theory.
The radial profile of the lattice is dynamically deter-

mined by the scalar wave equation in the bulk. At leading
order in ϵ, we can work with the Reissner-Nordström
geometry. The bulk solution takes the form
ϕðr; x; yÞ ¼ ϵ ϕ0ðrÞ cosðkLxÞ, where the background lattice
profile ϕ0ðrÞ satisfies

d
dr

�
f
r2
dϕ0

dr

�
− k2L

r2
ϕ0 −m2L2

r4
ϕ0 ¼ 0; (4)

with fðrÞ the familiar emblackening factor of the Reissner-
Nordström metric. A typical solution to this equation has ϕ
bounded everywhere in the bulk, with its size controlled by
ϵ. This makes a perturbative treatment possible. Our goal in
this Letter is to calculate the resistivity due to the lattice to
order Oðϵ2Þ. By turning on a lattice in the scalar field, as
opposed to the chemical potential, we have ensured that the
stress tensor of our lattice is smaller than the lattice itself,
that is Oðϵ2Þ. This means that, to leading order, we can
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ignore any oscillations in the metric and gauge field.
Furthermore, it was shown in [10] that, in the context of
massive gravity, the dc conductivity is independent of the
homogeneous corrections to the background. We will see
shortly that the same result holds here too.
The net result of these simplifications is that, in order to

compute the dc conductivity, we may treat the background
geometry as being the Reissner-Nordström black hole, with
an oscillating scalar lattice sitting on top.
We now perturb the lattice background to determine the

conductivity. We do this by adding a small electric field on
the boundary of the form δAxe−iωt. We impose ingoing
boundary conditions at the IR horizon to determine the
solution δAxðr;ωÞ, the optical conductivity is then given
by σðωÞ ¼ δA0

x=ðiωδAxÞjr¼0.
In the usual case of a homogeneous black hole, δAx

sources a metric perturbation δgtx but, if we work in gauge
δgrx ¼ 0, nothing more. In contrast, in the full lattice
background, studied numerically in [3], things are much
more complicated and one ends up having to solve for 11
coupled perturbations. Thankfully, in our small-lattice
expansion, things are not so bad. We can continue to work
in the gauge δgrx ¼ 0. We have already argued that to
leading order it is consistent to treat the background metric
and gauge field as homogeneous. As a result, the metric
perturbation δgtx sources an inhomogeneous scalar pertur-
bation δϕ, but there things stop.
The upshot is that we have three perturbations: δAx, δgtx

and δϕ, together with the constraint equation that arises
from the gauge fixing condition δgrx ¼ 0. Before we jump
into a morass of coupled equations, let us first explain some
of the physics that underlies these perturbations.
We start with the new ingredient which is the scalar

perturbation δϕ. A simple parity argument ensures that the
scalar perturbation takes the form, δϕðr; x; tÞ ¼
δϕðr; tÞ sinðkLxÞ. However, there is deeper interpretation of
this functional form: it is a bulk phonon mode. This is easily
seen by rewriting the perturbation as a position dependent
phase of the bulk lattice,

ϕðr; x; tÞ ¼ ϵϕ0ðrÞ cos ðkL½x − πðr; tÞ�Þ.

The phonon mode π is related to the scalar perturbation by
δϕ ¼ ϵkLϕ0ðrÞπðr; tÞ.Ateach radial slice in thebulk,youcan
thinkofa layerofmaterialwith“ions” (i.e., peaksof the lattice)
positionedatx − πðr; tÞ ¼ 2πn=kL.Anonzeromomentumin
thebulk,δgtx, collideswith these layersandshifts themrelative
tooneanother.Thisdisturbancethenpropagatesasatransverse
phononin theradialdirectionuntil it reaches thehorizonwhere
themomentumis lost to the system.This simplepicturemakes
it clear that the phonon is responsible for the momentum
dissipation in the boundary theory and that this dissipation is
ultimately governed by the properties of the horizon. Thiswill
be manifest in our formula below for the dc conductivity.

The existence of this bulk phonon mode is intimately tied
with the fact that the lattice inducesamass for thegraviton.To
see this, we can use diffeomorphism invariance to freeze the
phonon mode at the expense of introducing a new, propa-
gating degree of freedom in the metric. All we need to is to
switch to a new coordinate defined by ~x ¼ x − πðr; tÞ. This
coordinate transformation places the dynamics back into the
metric. In this new gauge, δgrx becomes dynamical and
corresponds to the extra polarisation of a massive graviton.
This is entirely analogous to the Higgs mechanism in gauge
theory where a would-be Goldstone mode is eaten by the
gauge field. Here, instead, the phonon is eaten by themetric.
The whole discussion parallels the usual Stückelberg for-
mulation of massive gravity [11], now with the phonon
playing the role of the Stückelberg field. (See also [12]).
To truly see that our lattice describes a massive graviton,

we should look at the full perturbation equations below. But
there is a quick, cheap way to get the basic idea. From the
discussion above, it is clear that the mass should arise from
the breaking of translational invariance. In other words, it
comes from the ð∂xϕÞ2 terms in the action. Evaluated on
the background solution ϕ ¼ ϵϕ0ðrÞ cosðkLxÞ, the homo-
geneous contribution to the mass is

Seff ¼
1

2

Z
d4x

ffiffiffiffiffiffi−gp
M2ðrÞgxx; (5)

where the effective mass MðrÞ is radially dependent and
given by

M2ðrÞ ¼ 1

2
ϵ2k2Lϕ0ðrÞ2. (6)

Expanding out the determinant
ffiffiffiffiffiffi−gp

in (5) will give the
promised effective mass to δgtx and δgrx. The mass term (5)
has the same form as those that arise in the holographic
massive gravity theory of [7], albeit with a different radial
profile (6).
With these basic explanations of the relevant physics in

place, let’s now turn to the details. As described above, we
focus on the homogenous perturbations to leading order in ϵ.
To avoid clutter, we’ll set 2κ2 ¼ L2 ¼ e2 ¼ 1 in what
follows. It’s simplest to keep the phonon as a physical degree
of freedom andwork in δgrx ¼ 0 gauge.We can describe the
perturbations at order Oðϵ2Þ using the Maxwell, scalar and
r-x components of the Einstein equations

ðfδAx
0Þ0 þ ω2

f
δAx ¼

μ

rh
ðr2δgtxÞ0

r2
�
fM2

r2
π0
�0

þ ω2M2

f
π ¼ iω

r2M2

f
δgtx

ðr2δgtxÞ0 ¼
μr2

rh
δAx þ

fM2

iω
π0: (7)

The UV boundary condition for the phonon field π plays
an important role. The fact the we have explicitly, as
opposed to spontaneously, broken translational invariance
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means that we require the falloff πðr; tÞ ∼ rΔþ−Δ− at the
boundary. In contrast, in situations where translational
symmetry is broken spontaneously, the correct boundary
condition is that the phonon approaches a constant at the
boundary. It is simple to eliminate δgtx, leaving two
coupled equations for δAx and π,

ðfδAx
0Þ0 þ ω2

f
δAx ¼

μ2r2

r2h
δAx þ

μfM2

iωrh
π0

1

r2

�
r2f
M2

�
fM2

r2
π0
�0�0

þ ω2

r2
π0 ¼ iωμ

rh
δAx þ

fM2

r2
π0:

The key observation is that these perturbation equations are
equivalent to those that arise in massive gravity [7,9,10]
with an effective graviton massM2ðrÞ. The phonon mode π
is related to the extra propagating metric mode grx in
massive gravity through the relation π0 → r2grx. Of course
this is not a surprise—as we have already emphasized, the
two descriptions are gauge equivalent.
Conductivity.—To compute the optical conductivity, we

need only solve the perturbation equations subject to the
appropriate boundary conditions. Fortunately, many of
the relevant calculations have already been performed in the
context of massive gravity. It was shown in [10], that the dc
conductivity depends only on the behavior of the fields at
the infrared horizon. The argument is a generalisation of an
earlierobservationbyIqbalandLiu[13].Theessenceofitgoes
asfollows: thephotonδAx hasaneffectivemassproportional to
the charge density μ=rh; meanwhile, as we described above,
the phonon has a mass proportional toM2. However, the two
modes mix. And it is simple to check that there is a linear
combination which is massless and, in the ω → 0 limit, does
not evolve from thehorizon to theboundary.Furthermore, this
linear combination carries the information about the conduc-
tivity. Thismeans that one can compute the dc conductivity in
terms of properties of the horizon of the black hole.
The end result is that the scattering rate is fixed by the

effective graviton mass evaluated at the horizon [10],

Γ ¼ s
4π

M2ðrhÞ
E þ P

; (8)

where the entropy density s, energy density E and pressure
P are thermodynamic functions that are nonzero in the
extremal RN black hole background. This result was also
obtained for hydrodynamic transport in massive gravity
in [9].
The key content of this formula is that the scattering rate

is simply determined by the effective graviton mass
induced by lattice,

Γ ∼M2ðrhÞ ∼ ϵ2k2Lϕ0ðrhÞ2;
where we have dropped the other coefficients on the
grounds that they are, to leading order, constants that are
independent of temperature.

All that remains is to determine the infrared behavior of
the scalar profile ϕ0ðrÞ which will govern the temperature
dependence of graviton mass (6). But this is straightfor-
ward. At T ¼ 0, the infrared geometry is AdS2 ×R2. As
we reviewed in the introduction, this is the holographic
manifestation of a locally critical theory. If we denote the
radial coordinate in AdS2 as ζ, the regular solution for ϕ
falls off asymptotically in the infrared as ϕ0 ∼ ζ

1
2
−νkL where

νkL þ 1=2 is the dimension of the dual operator OðkLÞ in
real space. The dependence on the lattice spacing is given

by νkL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ 1

6
m2L2 þ 2k2L=μ

2
q

. Upon taking a Fourier

transform, the dimension of the operator in frequency space
becomesΔkL ¼ νkL − 1=2, so we have ϕ0 ∼ ζ−ΔkL . At finite
temperature, the AdS2 geometry terminates in a horizon at
ζH ∼ T−1. This means that the effective graviton mass, and
hence resistivity, scales as

ρ ∼ ϵ2k2LT
2ΔkL : (9)

Happily, this is precisely the result of Hartnoll and Hofman
[2] that we reviewed in the Introduction.
Closing remarks.—Throughout this Letter, we have

relied on the technical crutch of the small-lattice expansion.
This allowed us to isolate the phonon mode as the relevant,
extra degree of freedom in computing the resistivity.
However, we would like to suggest that, even in more
complicated situations, the phonon mode continues to
dominate the low-temperature physics. Here we offer some
suggestions on how this may happen.
Let us first address what would happen if we compute

the resistivity to higher order in the lattice strength, ϵ.
Further fields—including, most pertinently, the gauge field
At—will pick up a spatial modulation and therefore
contribute to the effective mass of the graviton at Oðϵ4Þ.
The analysis of [2] shows that each such field will give a
contribution to the dc conductivity of the form (1). At low
temperatures, the charge density Jtð2kLÞ is the least
irrelevant operator (together with Ttt, with which it mixes)
to get a spatially modulated expectation value and so,
although it is sub-leading in the ϵ-expansion, dominates the
low-temperature resistivity [2,3].
Although technically more involved, it seems clear how

the field theory expectations above are mirrored in the
gravity calculation. Clearly, we will have many more
perturbed fields in the game. However, among these we
expect that there remains a linear combination which is
massless and, therefore, does not evolve from the horizon to
the boundary. This means that we can focus attention on the
far infrared geometry. Here, the gauge field At is the largest
spatially varying field and the fields dominating the
perturbation equations are δAx, δgtx, and now the phonon
δAt arising from the induced ionic lattice. Thus, in the far
IR, the perturbation equations reduce to those considered
here and resistivity will again be given by (9), but with the
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exponent Δk replaced by the appropriate dimension of the
ionic lattice (which was computed in [14]).
We note that the conceptual steps sketched above also

hold for other situations, such as the ionic lattice, where no
simple expansion in the lattice strength is available. Instead,
we replace the expansion in ϵ with an infrared expansion.
Of course, this is what one naturally expects for the dc
conductivity and, even without an explicit demonstration of
the massless mode, it should be possible to extract the
leading temperature dependence of the resistivity by a
matching calculation [15,16].
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