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We present a new approach to computing energy-energy correlations in gauge theories that exploits their
relation to correlation functions and bypasses the use of scattering amplitudes. We illustrate its power by
calculating energy-energy correlations in the maximally supersymmetric Yang-Mills theory in the next-to-
leading order approximation.

DOI: 10.1103/PhysRevLett.112.071601 PACS numbers: 11.25.Hf, 11.25.Tq, 13.66.Bc

Introduction.—In this Letter we study a particular class
of observables, the so-called energy-energy correlations
(EEC), which were first introduced in the context of QCD
for the process of electron-positron annihilation into
hadrons. EEC played a crucial role in precision tests of
QCD as the theory of strong interactions. EEC measures
the differential angular distribution of the energy that flows
through two calorimeters separated by the relative angle χ.
It is defined [1] as the energy-weighted sum over pairs of
particles produced in the final states of eþe− → V → aþ
bþ everything (with V being a virtual photon γ� or a Z0

boson):

EEC ¼
X
a;b

Z
dσV→aþbþX

EaEb

Q2σtot
δðcos θab − cos χÞ: (1)

Here, Q is the total energy in the center-of-mass frame, Ea
and Eb are the energies of the detected particles, θab ¼ χ is
the relative angle between their spatial momenta, σtot is the
total cross section such that

R
1−1 d cos χEEC ¼ 1.

Being an infrared safe quantity, EEC is insensitive to
long-distance dynamics and can be computed in perturba-
tive QCD as a series in powers of the coupling αsðQÞ.
Nonperturbative hadronization effects modify EEC at the
level of corrections suppressed by powers of 1=Q. For
0 < χ < π, EEC receives contributions from final states
with three or more particles and its perturbative expansion
starts at order OðαsÞ. The leading order effect was com-
puted using conventional techniques [1,2],

EECQCD ¼ αsCF

4πz3

��
z

1 − z
− 9 − 15zþ 3z2

z2

�
ln

1

1 − z

þ 3ð2z − 3Þð3z − 2Þ
2zð1 − zÞ

�
þOðα2sÞ; (2)

where z ¼ ð1 − cos χÞ=2 and CF ¼ 4=3 is the quadratic
Casimir of the gauge group SUð3Þ. Already at the next-to-
leading order, EEC is induced by final states with three and
four particles.
Despite numerous attempts (see Ref. [2] and references

therein), the analytical calculation of Oðα2sÞ corrections to
EEC is still an open problem. The main complications arise
from the necessity to regularize infrared divergences of
individual contributions to (1), and from the resulting
complexity of the regularized multiparticle phase-space
integrals. The Kinoshita-Lee-Nauenberg theorem warrants
the absence of infrared singularities in the final result but it
comes at the price of a nontrivial cross talk between
contributions involving different numbers of particles in
the final state.
A natural question is whether there exists an alternative

approach to computing EEC that avoids the above prob-
lems. This is what we show in this work. First, we present
such a framework and, second, we illustrate its power by
calculating EEC in N ¼ 4 supersymmetric Yang-Mills
(SYM) theory, that can be viewed as a simplified version
of QCD. As we show below, it shares many features with
QCD as far as the properties of EEC are concerned.
Apart from gluons, N ¼ 4 SYM theory also describes

fermions and scalars, all in the adjoint representation
of the SUðNÞ gauge group. The theory has no scale
and remains conformal for any value of the coupling
gYM. SinceEEC is insensitive to the dynamics in the infrared,
the latter property does not pose any problem
and we can safely apply (1) to define EEC in N ¼ 4
SYM theory to any order in perturbation theory.
Furthermore, in the planar limit the theory is known to be
dual to string theory on AdS5 × S5 [3]. This allows one to
compute EEC in planar N ¼ 4 SYM theory at strong
coupling.
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Energy flow correlations.—The total cross section σtot is
the simplest example of an observable for which the
conventional approach based on scattering amplitudes
proves inefficient. It is much more advantageous to use
the optical theorem and compute σtot as the Fourier trans-
form of two-point correlation functions of gauge invariant
operators OðxÞ,

σtot ¼
Z

d4xeiqxh0jO†ðxÞOð0Þj0i; (3)

with qμ ¼ ðQ; 0⃗Þ being the total momentum in the center-
of-mass frame, q2 > 0. Applying (3), we avoid infrared
divergences at intermediate steps and the necessity to sum
over all final states.
EEC (1) admits an equivalent representation analogous

to (3) in terms of the Wightman (non-time-ordered)
correlation function

hEðn⃗1ÞEðn⃗2Þiq¼
Z

d4xeiq·xh0jO†ðxÞEðn⃗1ÞEðn⃗2ÞOð0Þj0i;

(4)

involving the so-called energy flow operators [4–6]

Eðn⃗Þ ¼
Z

∞

−∞
dτ lim

r→∞
r2niT0iðt ¼ τ þ r; rn⃗Þ: (5)

Here, the stress-energy tensor Tμνðt; x⃗Þ is placed infinitely
far from the collision region and is integrated over the
detector working time. The operator (5) describes a
calorimeter and has a simple physical interpretation: it
measures the energy flux per unit solid angle in a given
direction n⃗ (with n⃗2 ¼ 1). The product Eðn⃗1ÞEðn⃗2Þ mea-
sures the correlation between energy flowing in the
direction of n⃗1 and n⃗2. Then, EEC is given by the
correlation function (4) averaged over the orientations n⃗1
and n⃗2, with the relative angle χ kept fixed,

EEC ¼
Z

dΩ1dΩ2δðn⃗1 · n⃗2 − cos χÞ hEðn⃗1ÞEðn⃗2Þiq
Q2σtot

: (6)

For a scalar source OðxÞ and qμ ¼ ðQ; 0⃗Þ, the correlation
function (4) only depends on ðn⃗1 · n⃗2Þ so that the average
(6) becomes trivial.
Relations (3), (4), and (6) rely on unitarity and the

completeness of the asymptotic states,
P

XjXihXj ¼ 1.
They hold in a generic field theory, be it QCD or
N ¼ 4 SYM theory. To make use of (3) and (4), we have
to specify the source OðxÞ and find an efficient way of
computing the Wightman correlation functions involving
the energy flow operators. For eþe− annihilation in QCD,
the operator OðxÞ is given by the electroweak quark
current. For the sake of simplicity, in N ¼ 4 SYM theory
we choose it to be the simplest half-BPS operator of

dimension two, OðxÞ ¼ tr½Z2ðxÞ�, built from a complex
scalar ZðxÞ.
At weak coupling, the operator tr½Z2ðxÞ� produces out of

the vacuum a pair of complex scalars that decays into an
arbitrary number of on-shell massless N ¼ 4 particles
(gluons, gluinos, and scalars). EEC in N ¼ 4 SYM theory
receives contributions from the same type of Feynman
diagrams as in QCD with the only difference that the
detected particles a and b can be of different types. Another
advantage of the choice of half-BPS operators is that the
two-point correlation function h0jO†ðxÞOð0Þj0i is pro-
tected in N ¼ 4 SYM theory from quantum corrections
and is given by its Born approximation. Together with (3)
this leads to σtot ¼ ðN2 − 1Þ=ð4πÞ, which is valid inN ¼ 4
SYM theory for arbitrary coupling. Unlike σtot, EEC is
fixed up to an arbitrary function Fðz; aÞ of the angle χ and
the ’t Hooft coupling a ¼ g2YMN=ð4π2Þ,

EECN¼4 ¼
Fðz; aÞ

4z2ð1 − zÞ ; z ¼ sin2ðχ=2Þ: (7)

Here, 0 < z < 1 and the prefactor is chosen for conven-
ience. EEC is expected to be a regular positive-definite
function of z, normalized as

R
1
0 dzEECðzÞ ¼ 1=2.

In close analogy with the QCD result (2), the weak-
coupling expansion of Fðz; aÞ starts at order OðaÞ. The
lowest order term comes from the transition of the operator
tr½Z2ðxÞ� into three-particle states (two scalars plus a gluon
and a scalar plus a pair of gluinos). It reads [7]

EECN¼4 ¼
a
4z3

z
1 − z

ln
1

1 − z
þOða2Þ: (8)

Comparing this relation with (2), we observe that (up to
the redefinition of the coupling a → αsCF=π) EEC in
QCD and in N ¼ 4 SYM theory have identical asymp-
totics for z → 1. Also, both EECs exhibit the same Oð1=zÞ
behavior for z → 0, but the coefficient driving this
asymptotics is different. For z → 1, or, equivalently,
χ → π, EEC measures back-to-back correlations and its
asymptotic behavior is governed by the emission of soft
and collinear particles. Their contribution can be analyzed
using the semiclassical approximation and is known to be
universal, independent of the choice of the source OðxÞ in
both theories. On the other hand, the z → 0 asymptotics
describes the correlation between particles with almost
aligned momenta. It is driven by the collinear branching of
particles in the final state and is sensitive to the particle
content of the theory.
Method and result.—Trying to compute the next-to-

leading Oða2Þ correction to (8) using the conventional
technique based on scattering amplitudes, we encounter the
same complications as in QCD. They can be overcome by
employing (4) and applying the formalism developed in
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Refs. [6]. It allows us to avoid infrared divergences and
provides a framework that preserves all symmetries of the
theory at every step of the calculation.
Replacing E in (4) by its definition (5), we see that EEC

is related to a multifold integral of the four-point Wightman
correlation function hO†TμνTρσOi involving two half-BPS
operators and two stress tensors. In N ¼ 4 SYM theory it
has the following remarkable properties. First, the super-
conformal symmetry relates it to the one built from four
scalar half-BPS operators, thus eliminating the complica-
tion of dealing with Lorentz indices. Second, in Euclidean
space, the latter correlation function is defined by a single
function Φðu; v; aÞ of the conformal cross ratios u and v
and admits the Mellin representation

Φðu; v; aÞ ¼
Z −δþi∞

−δ−i∞
dj1dj2
ð2πiÞ2 Mðj1; j2; aÞuj1vj2 : (9)

The Mellin amplitude Mðj1; j2; aÞ is known both at weak
and strong coupling in planar N ¼ 4 SYM theory. The
integral in (9) goes along the imaginary axis with
0 < δ < 1=2.
Following the Lüscher-Mack procedure, we can

analytically continue (9) to obtain the four-point
Wightman functions in Minkowski space [8]. Finally,
performing the limit and integration as indicated in (5)
we obtain from (4) and (7) the following representation for
Fðz; aÞ [6]

Fðz; aÞ ¼
Z

dj1dj2
ð2πiÞ2 Mðj1; j2; aÞKEECðj1; j2; zÞ: (10)

The dependence on the coupling constant resides in the
Mellin amplitude, while the z dependence enters only the
kernel encoding the information about the calorimeters,

KEECðj1; j2; zÞ ¼
2Γð1 − j1 − j2Þ

�
z

1−z
�−j1−j2

Γðj1 þ j2Þ½Γð1 − j1ÞΓð1 − j2Þ�2
: (11)

Thus, Eq. (10) yields EEC in N ¼ 4 SYM theory as the
convolution of two well-defined functions.
To compute (10) at next-to-leading order, we have to

expand the Mellin amplitude to order Oða2Þ. To this end,
we make use of the known two-loop result [9,10] for the
function (9),

Φðu; v; aÞ ¼ aΦð1Þðu; vÞ þ a2
�
1

2
ð1þ uþ vÞ½Φð1Þðu; vÞ�2

þ 2

�
Φð2Þðu; vÞ þ 1

u
Φð2Þðv=u; 1=uÞ

þ 1

v
Φð2Þð1=v; u=vÞ

��
;

in terms of Euclidean scalar box integrals Φð1Þ and
Φð2Þ whose explicit form can be found in Refs. [9–11].
All that we need for our purposes is their Mellin
transforms [11]

Mð1Þðj1;j2Þ¼−1

4
½Γð−j1ÞΓð−j2ÞΓð1þ j1þ j2Þ�2;

Mð2Þðj1;j2Þ¼−1

4
Γð−j1ÞΓð−j2ÞΓð1þ j1þ j2Þ

Z
dj01dj

0
2

ð2πiÞ2

×
Γðj01− j1ÞΓðj02− j2ÞΓð1þ j1þ j2− j01− j02Þ

Γð1− j01ÞΓð1− j02ÞΓð1þ j01þ j02Þ
×Mð1Þðj01;j02Þ.

Using these relations it is straightforward to work out the
expression for the Mellin amplitude in (9),

M ¼ aMð1Þðj1; j2Þ þ a2
�
1

2
~Mð2Þðj1; j2Þ þ ~Mð2Þðj1; j2 − 1Þ

þ 2Mð2Þðj1; j2Þ þ 4Mð2Þðj1;−1 − j1 − j2Þ
�
; (12)

where ~Mð2Þðj1; j2Þ is the Mellin amplitude for ½Φð1Þ�2,

~Mð2Þ ¼
Z

dj01dj
0
2

ð2πiÞ2 M
ð1Þðj1 − j01; j2 − j02ÞMð1Þðj01; j02Þ:

Substituting (11) and (12) into (10) we find Fðz; aÞ as a
sum of nested Mellin integrals which can be computed
using standard techniques.
To save space we present the final result of our

calculation and defer the details to a separate publication.
It is convenient to write EEC as

Fðz; aÞ ¼ aF1ðzÞ þ a2½ð1 − zÞF2ðzÞ þ F3ðzÞ�; (13)

where 0 < z < 1 and FwðzÞ stands for a linear
combination of functions of homogenous weight w ¼ 1,
2, 3 specified below. To lowest order in the coupling we
have

F1ðzÞ ¼ − lnð1 − zÞ; (14)

in agreement with (8). At next-to-leading order, the
functions F2ðzÞ and F3ðzÞ take the form
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F2ðzÞ ¼ 4
ffiffiffi
z

p �
Li2ð− ffiffiffi

z
p Þ−Li2ð

ffiffiffi
z

p Þþ ln z
2

ln

�
1þ ffiffiffi

z
p

1− ffiffiffi
z

p
��

þ ð1þ zÞ½2Li2ðzÞ þ ln2ð1− zÞ� þ 2 lnð1− zÞ ln
�

z
1− z

�
þ z

π2

3
;

F3ðzÞ ¼
1

4

�
ð1− zÞð1þ 2zÞ

�
ln2

�
1þ ffiffiffi

z
p

1− ffiffiffi
z

p
�
ln

�
1− z
z

�
− 8Li3

� ffiffiffi
z

p
ffiffiffi
z

p − 1

�
− 8Li3

� ffiffiffi
z

p
ffiffiffi
z

p þ 1

��
− 4ðz− 4ÞLi3ðzÞ

þ 6ð3þ 3z− 4z2ÞLi3
�

z
z− 1

�
− 2zð1þ 4zÞζ3 þ 2½2ð2z2 − z− 2Þ lnð1− zÞ þ ð3− 4zÞz ln z�Li2ðzÞ

þ 1

3
ln2ð1− zÞ½4ð3z2 − 2z− 1Þ lnð1− zÞ þ 3ð3− 4zÞz ln z� þ π2

3
½2z2 ln z− ð2z2 þ z− 2Þ lnð1− zÞ�

�
: (15)

Both functions are given by sums of basis functions of
weight two fLi2; ln ln; π2g and weight three fLi3;Li2 ln;
ln ln ln; π2 ln; ζ3g, respectively, with nontrivial arguments.
The unusual features of F2ðzÞ and F3ðzÞ are that the basis
functions come with factors of

ffiffiffi
z

p
and z for the former and

prefactors are at most quadratic in z for the latter.
Equation (15) represents the main result of this work.
The following comments are in order. Even though the

functions F2ðzÞ and F3ðzÞ depend on
ffiffiffi
z

p
, they are

manifestly invariant under
ffiffiffi
z

p
→ − ffiffiffi

z
p

, so that their expan-
sion near z ¼ 0 runs in integer powers of z as described
below. The cross sections dσV→aþbþX entering (1)are given
by (absolute value squared of) scattering amplitudes which
are known to have homogenous weights in planar N ¼ 4
SYM theory at weak coupling. As we see, this property is
lost for EEC after the phase space integration in the right-
hand side of (1). Nevertheless, it is restored for z → 1 as we
show below.
End-point asymptotics.—Let us examine the asymptotics

of EEC close to the end points z ¼ 0 and z ¼ 1.
As we mentioned above, in the back-to-back kinematics

z → 1 (or χ → π), EEC receives large perturbative
(Sudakov) corrections from the emission of soft and
collinear particles. We find from (13) (with y≡ 1 − z → 0)

Fðz; aÞ ∼z→1 − a ln yþ a2

2

�
ln3yþ π2

2
ln yþ ζ3

�
; (16)

up to terms suppressed by powers of y. The logarithmically
enhanced corrections ak lnn y can be resummed to all orders
in the coupling in very much the same way as in QCD [12],
yielding

Fðz; aÞ ∼z→1 1

2
HðaÞ

Z
∞

0

db b J0ðbÞSðb2=y; aÞ: (17)

Here, J0ðbÞ is a Bessel function and Sðb2=y; aÞ is the
Sudakov form factor

S ¼ exp

�
− 1

2
ΓcuspðaÞ ln2

�
b2

yb20

�
− ΓðaÞ ln

�
b2

yb20

��

(with b0 ¼ 2e−γE). Its dependence on the coupling constant
is encoded in two functions, the cusp (Γcusp) and collinear
(Γ) anomalous dimensions. At weak coupling, to two-loop
order, we have ΓcuspðaÞ ¼ a − 1

2
ζ2a2 and ΓðaÞ ¼ − 3

2
ζ3a2.

Both functions are known from integrability in planar
N ¼ 4 SYM theory for any coupling. Finally, HðaÞ is
the so-called coefficient function that accounts for the
emission of hard gluons. It only depends on the coupling
constant and is needed to incorporate subleading loga-
rithms. Expanding (17) to order Oða2Þ we reproduce (16)
and obtain HðaÞ ¼ 1 − ζ2a. Note that the perturbative
correction to HðaÞ has homogeneous transcendentality.
The same applies to all functions of the coupling entering
(17) and, hence, to Fðz; aÞ itself. Indeed, examining (13)
we observe that the contribution of the weight-two function
F2ðzÞ is suppressed for z → 1, whereas F3ðzÞ reduces to a
sum of weight-three functions with rational coefficients.
Moreover, we anticipate that for z → 1 the function Fðz; aÞ
computed in N ¼ 4 SYM theory describes the maximally
transcendental part of the analogous QCD expression. We
verified it to two-loop accuracy making use of the available
results [13].
Let us now turn to the analysis of the opposite asymp-

totic limit z → 0 (or χ → 0). It corresponds to the physical
situation where the calorimeters measure nearly collinear
particles. We find from (13) that in this limit EEC gets
enhanced by a ln z,

Fðz; aÞ ∼z→0az

�
1þ a

�
ln z − 1

2
ζ3 þ ζ2 − 3

��
: (18)

Notice that, in spite of the presence of
ffiffiffi
z

p
in the two-loop

result (15), the function in (18) has an expansion in integer
positive powers of z. All log-enhanced corrections to
Fðz; aÞ of the form aða ln zÞk can be resummed using
the “jet calculus” [14]. In this approach, the leading z → 0
asymptotics of EEC is determined by a partonic cascade in
which the scalar particle with virtualityQ2 created from the
vacuum by the source (half-BPS operator) fragments into a
pair of partons a and b with a small invariant mass
Sab ¼ 4EaEbsin2ðχ=2Þ ∼Q2z. EEC is then given by the
total probability of this transition weighted with the energy
of the detected particles,
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Fðz; aÞ ∼z→0azðQ2=SabÞ−γTð3Þ ¼ az1þaþOða2Þ; (19)

where γTðSÞ ¼ a
P

S−2
k¼1 1=kþOða2Þ is the twist-two time-

like anomalous dimension of spin S.
As follows from (17) and (19), the resummation weakens

the singularity of Fðz; aÞ at z ¼ 1 and z ¼ 0, respectively,
so that the energy-energy correlation (7) becomes integrable
at the end points. The resummation formulas (17) and (19)
can be combined with (15) to provide a definite prediction
for EEC for 0 ≤ z ≤ 1 in the next-to-leading logarithmic
approximation. We find that the obtained EEC has a shape
which is remarkably similar to the one in QCD [2]. Going
from one to two loops, we observe that EEC flattens. This is
in qualitative agreement with the prediction for EEC in
planar N ¼ 4 SYM theory at strong coupling [5,6]:

EECN¼4 ∼a→∞ 1

2
½1þ a−1½1 − 6zð1 − zÞ� þOða−3=2Þ�:

It will be challenging to find a function that interpolates EEC
between weak and strong coupling. Finally, we believe that
our present analysis can help in advancing analytic calcu-
lations of EEC in QCD. It is worth mentioning that (15)
involvessomeofthe transcendental functionsthatalsoappear
in the two-loop result for the quarks (or nf dependent)
contribution to EEC in QCD [15].
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