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Ultracold neutrons (UCNs) can be bound by the potential of terrestrial gravity and a reflecting mirror.
The wave function of the bound state has characteristic modulations. We carried out an experiment to
observe the vertical distribution of the UCNs above such a mirror at the Institut Laue-Langevin in 2011.
The observed modulation is in good agreement with that prediction by quantum mechanics using the
Wigner function. The spatial resolution of the detector system is estimated to be 0.7 μm. This is the first
observation of gravitationally bound states of UCNs with submicron spatial resolution.
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Terrestrial gravity is the most common force experienced
in everyday life. However, experimental measurements of
quantum-mechanical bound states in Earth’s gravitational
field were started only in the past decade by the pioneering
works of Nesvizhevsky et al. using ultracold neutrons
(UCNs) [1,2]. UCNs are neutrons with kinetic energies
lower than the Fermi pseudopotential of materials (e.g., Ni,
with ∼200 neV) and are, hence, totally reflected by the
material surfaces at any angle of incidence. The wave
function ψðzÞ of an UCN in the terrestrial gravitational field
obeys the Schrödinger equation in the vertical direction z.
The eigenstates of this system are linear combinations of
Airy functions [3]. The vertical probability distribution
of UCN bound states, namely, the sum of the absolute
squares of eigenfunctions, has a characteristic modulation.
The eigenstate is specified by two scales, the length
½ℏ2=ð2m2gÞ�1=3 ¼ 5.87 μm and the energy ðmg2ℏ2=2Þ1=3 ¼
0.602 peV, where ℏ is the reduced Planck constant,m is the
neutron mass, and g is the gravitational acceleration. There
are, therefore, two ways to observe the bound state,
measuring its energy or its position. Recently, first mea-
surements of the differences between eigenenergies using
the transitions of UCNs between quantum states in the
terrestrial gravitational potential have been reported [4].
The ability of experiments to observe the spatial distribu-
tion of the bound state is limited by the spatial resolution
(about 2 μm) of current slow neutron detectors.
To observe the spatial distribution of gravitationally

bound states with high precision, we developed a novel

technique, shown in Fig. 1, with three main components
[5]. The Cartesian coordinate system (x, y, z) is defined in
Fig. 1(b). Incident UCNs pass through the collimating
guide in which they settle into gravitationally bound states
above the flat bottom mirror. The ceiling removes UCNs
whose wave functions significantly penetrate the ceiling.
The height distribution of the surviving UCNs is magnified
by a cylindrical rod which acts as a convex mirror. After
reflection at the rod surface, UCNs are detected by a CCD-
based pixelated detector. Z is the axis on the pixelated
detector corresponding to the magnified height z. The
collimating guide and magnification rod have a width of
50 mm along y. Using this setup, we performed an
experiment to observe the spatial distribution of gravita-
tionally bound states during a period of 17 days in August
2011 at the Institut Laue-Langevin (ILL).
We used the UCN beam line PF2 [6] at ILL, the world’s

highest intensity steady UCN source. The horizontal
velocity (vx) distribution of UCNs was measured using
the standard time-of-flight technique. The measured veloc-
ity distribution is nearly Gaussian, with a mean of 9.4 m=s
and standard deviation of 2.8 m=s.
The energy of UCNs is quantized inside the collimating

guide made of glass, with a height h ¼ 100 μm. The ceiling
of the guide removes UCNs with high vertical energy due
to its microscopic surface roughness, with an arithmetic
mean of 0.4 μm. Once such a neutron is reflected by the
ceiling, the large horizontal velocity component is con-
verted into a vertical velocity component. The chance to hit

PRL 112, 071101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

0031-9007=14=112(7)=071101(5) 071101-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.071101
http://dx.doi.org/10.1103/PhysRevLett.112.071101
http://dx.doi.org/10.1103/PhysRevLett.112.071101
http://dx.doi.org/10.1103/PhysRevLett.112.071101


the ceiling again is then enormously enhanced. Numerous
collisions cause UCN loss by absorption or upscattering.
In addition, an absorptive Gd-Ti-Zr alloy (54=35=11) was
deposited on the glass by vacuum evaporation [7] at the
Kyoto University Research Reactor Institute. The thickness
of the layer is 200 nm, and its potential is calculated to
be −13:9 − 26:5i neV.
At the end of the collimating guide, a cylindrical glass rod

of radius 3 mm magnifies the distribution of UCN like a
convex mirror. The geometrical arrangement of the magni-
fication system is shown in Fig. 1(b). The distribution of
100 μm in height z is magnified to ∼2.5 mm in the position
Z on the detector; hence, the average magnification power is
about 25. The glancing angle was only 20° in order to make
the critical energy of reflection high. Differences in vx cause
dispersion of the parabolic trajectories and smear the
distribution. This dispersion is estimated to be less than
0.1 μm of the height z. The rod was precisely ground by
Crystal Optics, Inc., and finely polished at the Research
Center for Ultra-Precision Science and Technology, Osaka
University. Furthermore, a Ni layer of 200 nmwas deposited
on the polished glass surface, increasing the potential from
100 to 200 neV so that all UCNs exiting the guide were
totally reflected. The Ni deposited surface has an arithmetic
mean roughness of 1.9 nm, much smaller than the wave-
length of UCN ∼100 nm. Hence, the diffused reflection
from the surface roughness of the rod can be neglected.

For high resolution two-dimensional detection, a CCD
was used. Since slow neutrons would pass through the
sensitive volume of CCDs without ionization, they must
first be converted to charged particles. To retain the intrinsic
spatial resolution, a 200 nm thin 10B neutron converter was
evaporated directly onto a CCD. After neutron capture, α
and 7Li particles are released. A back-thinned CCD [8] was
the base of the detector, with a pixel size is 24 μm × 24 μm
and sensitive area of 24:576 mm × 6.000 mm. The length
along the Z axis is 6 mm. An incident charged particle
creates electron-hole pairs inside the Si layer and loses
energy. About 300 000 electrons per MeV are created and
spread before reaching electrodes and being detected as a
two-dimensional cluster. The barycenter of the deposited
charges corresponds to the incident position of the charged
particle. The spatial resolution along the Z axis was
measured to be 3.35� 0.09 μm [9].
The setup was installed inside a vacuum chamber to

prevent neutrons from interacting with air. We evacuated
the chamber to 10 Pa before the experimental run. The
vacuum pump was disconnected during the measurement to
reduce vibration.
A neutron shutter with Cd blades was installed inside an

acrylic box as shown in Fig. 1(a) to shut off the UCN beam
during the readout of the CCD. The box was connected to
the beam pipe and the vacuum chamber by plastic bellows,
to prevent the transmission of vibrations. The shutter box
and the plastic bellows were filled with helium gas to
minimize scattering.
The magnetic shield of mu-metal covering the exper-

imental apparatus reduces the external magnetic field by
about 1=100. As shown in Fig. 1(a), the detector system
was installed on granite and antivibration tables [10] to
reduce vibration from the floor.
The horizontality of the detector system was better than

0.1 mrad and monitored by an inclinometer. The remaining
effects due to external magnetic field, vibration, and
horizontality were estimated to be negligible.
The distribution of UCNs on the pixelated detector can be

calculated using quantum mechanics. The state of an UCN
can, in general, be written as a superposition of the nth
energy eigenstates asΨðz; tÞ ¼ P

nanψnðzÞ expð−iEnt=ℏÞ,
where an satisfies

P
njanj2 ¼ 1 and ψnðzÞ is normalized to

give
R
dzjψnðzÞj2 ¼ 1. The experimental result is an average

over many incoherent UCNs. Since the phase of an is
randomly and uniformly distributed, the average of the
absolute squared value of the superposition becomes
jΨðzÞj2 ¼ P

njanj2jψnðzÞj2, where the time dependence
and interference terms are averaged out. In general, the
quantum state of UCNs is treated as a mixed state. The state
is described as a density matrix, ρ̂ ¼ P

npnjψnihψnj, where
pn ¼ janj2 is the probability of the nth state and jψni is the
corresponding state vector. The calculation was performed
in four steps (I, II, III, IV) from upstream towards the
detector, as shown in Fig. 1(b). In the first three steps, the
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FIG. 1. Experimental setup. (a) General view and (b) the main
components. The two thick bent arrows in (b) correspond to the
trajectories of neutrons flying horizontally above the bottom
mirror with the height of the bottom mirror z ¼ 0 μm and that of
the ceiling z ¼ 100 μm. The 45° slope of the bottom mirror and
the rod are designed to come in contact with each other. The
roman numerals denote the calculation steps.

PRL 112, 071101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

071101-2



probability of the eigenstate pn at the end of the guide is
calculated and then, in the last step, the UCN distribution
on the pixelated detector is derived. Each step is discussed in
the following paragraphs.
(I) The probabilities of the eigenstates just after the

entrance of the collimating guide are assumed to be
uniform. It should be noted that the eigenstates with vertical
energy larger than mgh (h ¼ 100 μm) inside the guide are
different from the case without the ceiling, because the
wave function becomes zero at the height of the ceiling.
In the following, values with tildes denote the case with
the ceiling at z ¼ h.
(II) For UCN loss inside the guide, we assume a

phenomenological loss rate of the nth state as Γn þ Bn,
where Γn and Bn are, respectively, the loss by the ceiling
and the bottom mirror. Γn is assumed to be proportional to
the probability of finding an UCN in the roughness region
as Γn ¼ γ

R
h
h−2δ dzj ~ψnðzÞj2, where γ is the constant for the

loss and δ ¼ 0.4 μm is the arithmetic mean roughness of
the ceiling (2δ is the average width of the roughness region)
[11]. Bn is assumed to be proportional to the bouncing
number per unit time of a bouncing motion above a floor in

classical mechanics, Bn ¼ βðg=2 ffiffiffi
2

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
m= ~En

q
, where β is

the constant for the loss. Hence, the probability at the guide
exit ~pn is written in terms of that at the guide entrance
~pnð0Þ as ~pn ∝ ~pnð0Þhexp ½−l=vxðΓn þ BnÞ�ivx , where l is
the length of the guide, hivx indicates the average over the
measured distribution of vx, and the normalization constant
is chosen to satisfy

P
n ~pn ¼ 1.

(III) At the exit of the guide, the wave function changes
because the ceiling suddenly disappears. From the sudden
approximation, the wave function is continuous at the time
of the sudden change as

P
m ~am ~ψm ¼ P

nanψn, where the
left- (right-)hand side corresponds to the wave function
with (without) the ceiling. Using the properties of a
complete orthonormal system, we obtain pn ¼

P
m ~pm

j R h
0 dzψnðzÞ ~ψmðzÞj2, where the probabilities satisfy pn ¼

janj2 and ~pm ¼ j ~amj2. In this equation, the cross terms are
canceled due to random phases. The resulting probabilities
of the eigenstates pn are shown in Fig. 2(a). The suppres-
sion of small n eigenstates has been reported by past
experiments [2,11].
(IV) The detected position on the detector after magni-

fication depends not only on the height z but also on the
vertical velocity vz at the end of the guide. Hence, we use a
kind of probability density in phase space given by the
Wigner function [12]. The Wigner function is defined as

Wðz; pzÞ ¼
1

2πℏ

Z
∞

−∞
dξψ�

�
z − 1

2
ξ

�
ψ

�
zþ 1

2
ξ

�

× exp
�
− ipzξ

ℏ

�
;

where z is the height, pz is the momentum along z, and ψ is
the wave function. The Wigner function in z-vz phase space

can be obtained by replacing pz with mvz. The Wigner
function has properties of

R∞−∞ dpzWðz; pzÞ ¼ jψðzÞj2
and

R
∞−∞ dzWðz; pzÞ ¼ jφðpzÞj2, where φðpzÞ is the

momentum space wave function. The Wigner function
of a mixed state ρ̂ ¼ P

npnjψnihψnj is a simple sum
Wðz; pzÞ ¼

P
npnWnðz; pzÞ, where Wn is the Wigner

function for the nth eigenstate. The Wigner function
obtained for this system is shown in Fig. 2(b). We calculate
the correspondence of the phase space point at the guide
end and the detection point on the detector by the classical
trajectory. This treatment is supported by the fact that, if the
potential of the system has terms only up to the second
order in the position, the motion of the Wigner function in
the phase space can be obtained by the equation of motion
in classical mechanics [13]. In this case, the potential has
only a first-order term of mgz. The whole phase space was
divided into a mesh with a size of Δz × Δvz ¼ 0.1 μm×
0.1 mm=s and each mesh point was weighted by the
Wigner function Wðz; vzÞ.
The predicted distribution was fitted to the data using a

binned maximum-likelihood method. Six parameters were
used in the fit: θ, Z0, d, γ, β, and s. θ denotes the rotation of
the pixelated detector in the detector plane. The position
of the data Z is rotated by θ to be Z → Z0. Z0 is the offset
for the position of predicted events Zpred. The relation of the
coordinates is Z0 ¼ Zpred þ Z0. d is the difference between
the actual and design heights of the pixelated detector;
hence,d effectivelymodifies themagnificationpower.d > 0
denotes that the actual position is higher than the design,
corresponding to a higher magnification. γ and β are the
parameters describing losses inside the guide. s is the ratio of
the signal to the total events. A flat background in Z is
assumed. The predicted distribution is normalized to have
the same sum of weights as number of events in the data.
The classical mechanical prediction was also fitted to the

data. The probability distribution in phase space just after
the entrance of the guide is assumed to be uniform. The
same parameter definitions of θ, Z0, d, and s were used,
while, for UCN loss inside the guide, two parameters, c and
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FIG. 2. (color) The resulting probabilities for eigenstates pn (a)
and the corresponding Wigner function Wðz; vzÞ, the sum of the
Wigner functions n ≤ 50 with the weights of the probabilities for
the eigenstates (b). Wðz; vzÞ for vz > 0 is shown here because
Wðz; vzÞ ¼ Wðz;−vzÞ. The color scale in (b) is in arbitrary units.
The best-fit parameters are used in both panels.
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b, were used instead of γ and β. In this case, when an UCN
hits the ceiling (floor), it is removed with a probability of
c (b) and specularly reflected with a probability of
1 − c (1 − b).
Events within the whole expected region 0.4 ≤ Z0 ≤

3.6 mm are selected and used to fill a histogram with
400 bins of width 8 μm. Eigenstates with n ≤ 50 are used
in the calculation. The best-fit parameters for quantum
(classical) mechanics are s ¼ 0.95� 0.02ð0.94þ0.01−0.02Þ,
Z0 ¼ −1.009þ0.001−0.002ð−0.970þ0.002−0.007Þ mm, d ¼ −0.015þ0.004−0.006
ð−0.23þ0.03−0.02Þ mm, θ ¼ −1.254� 0.001ðfixed to − 1.254Þ
deg, γ ¼ ð9.5þ0.7−0.9Þ × 104 s−1ðc ¼ 0.01� 0.01Þ, and β ¼
0.38þ0.04−0.03ðb ¼ 0.40� 0.02Þ. The χ2 per degrees of freedom
(NDF) is χ2=NDF ¼ 377:6=394ð439:2=395Þ and the cor-
responding p value is 0.715 (0.062). The distributions of
the data and the predictions of the best fits are shown in
Fig. 3. The form of the several modulations observed in the
data is in good agreement with the best-fit prediction using
quantum mechanics [Fig. 3(b)]. The modulation of the
quantum-mechanical prediction is mostly due to eigenstates
with n ≤ 15. This result favors the quantum-mechanical
prediction. In the classical mechanical prediction [Fig. 3(c)],
the two rising edges at Z0 ∼ 0.65 mm and Z0 ∼ 0.75 mm of
the distribution are due to downward- and upward-going
neutrons just before reflection by the rod.
The estimated systematic uncertainties are summarized in

Table I. ΔZ is the uncertainty in Z and Δz that in z. These
uncertainties are calculated for neutrons with z ¼ 0 and
vz ¼ 0, where the magnification power is the minimum
value 16.5. The total uncertainty of z is Δz ¼ 0.7 μm. No
detector effect was found which could fake the observed
modulation. The predicted modulation is also robust against
variations of fit parameters within their uncertainties.

In conclusion, we observed the spatial distribution of
gravitationally bound states of UCNs using a novel
technique. The vertical distribution of UCNs was mag-
nified by a cylindrical rod and detected by a pixelated
detector. The measured UCN distribution on the pixelated
detector can be derived using the Wigner function. The
shape of several peaks of the modulation of the UCN
distribution in the lower Z0 region is in good agreement
with the quantum-mechanical prediction. This is the first
observation of gravitationally bound states with submi-
cron resolution.
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