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Hamiltonian systems with long-range interactions give rise to long-lived out-of-equilibrium macro-
scopic states, so-called quasistationary states. We show here that, in a suitably generalized form, this result
remains valid for many such systems in the presence of dissipation. Using an appropriate mean-field kinetic
description, we show that models with dissipation due to a viscous damping or due to inelastic collisions
admit “scaling quasistationary states,” i.e., states that are quasistationary in rescaled variables. A numerical
study of one-dimensional self-gravitating systems confirms the relevance of these solutions and gives
indications of their regime of validity in line with theoretical predictions. We underline that the velocity
distributions never show any tendency to evolve towards a Maxwell-Boltzmann form.
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Physical systems characterized by long-range inter-
actions (for reviews, see e.g., Refs. [1,2]) are ubiquitous,
encompassing systems as diverse as self-gravitating bodies
in astrophysics, plasmas [3], lasers [4], cold atoms [5] in the
laboratory, and even biological systems [6]. One of the
main results of recent years about such systems is that,
quite generically, they relax, on times scales characterized
by the mean force field, towards long-lived macroscopic
states called quasistationary states (QSS) (e.g., galaxies in
astrophysics [7], the red spot of Jupiter [8], steady states of
a free electron laser [4]). These out-of-equilibrium states
have a typical lifetime diverging with particle number,
while on shorter time scales they are described within the
framework of the Vlasov equation. These results apply to
strictly conservative systems in a microcanonical frame-
work, and the question inevitably arises of the robustness of
such states beyond this idealized limit. Studies of a
paradigmatic toy model—the Hamiltonian mean field
(HMF) model [9]—have shown that, coupled to a canonical
heat bath [10,11] or when simple energy-conserving
stochastic forces are introduced [12,13], such states relax
rapidly towards thermal equilibrium. We report here
theoretical and numerical results of the effect of introducing
dissipative forces, with or without an intrinsic stochasticity.
Our main finding is that for power-law interactions such
systems admit what we call “scaling QSS,” i.e., solutions in
which the phase space distribution remains unchanged in
rescaled variables as the system evolves. Numerical study
for a class of such models shows that these solutions are
often realized, and in the particular cases where deviations
are observed, the phase space density evolves with increas-
ing correlation of velocity and position. This means in
particular that these systems never show any tendency,

either in the scaling QSS or when there are deviations from
them, to evolve towards the space and (Maxwellian)
velocity distributions of thermal equilibrium.
We consider particles interacting via a long-range central

power-law pair potential VðrÞ ¼ ðgm2Þ=ðnrnÞ where g is
the coupling, m the particle mass, and r the distance
between the particles. The mean-field limit will be taken
keeping the total energy E, total massM, and system size L
fixed, with N → ∞ and, thus, m ∼ N−1, g ∼ N0. For n > 0,
the short distance cutoff should in general be regulated. We
will not explicitly do so as we will treat the mean-field
dynamics that is in principle independent of the associated
cut off, at least down to n < d − 1where d is the dimension
of space [14].
We consider in addition two different classes of dis-

sipative forces: on the one hand, a viscous damping force of
the form f⃗ ¼ −mη∥v∥α−1v⃗, where α and η are constants,
which we will refer to as the viscous damping model
(VDM); on the other hand, instantaneous inelastic but
momentum-conserving collisions, which we will refer to as
the inelastic collisional model (ICM). For the sake of
simplicity, we restrict here to one-dimensional models,
while the generalization to any dimension will be consid-
ered elsewhere. For two colliding particles i and j of
incoming velocities vi and vj, the postcollisional velocities
are given by v�i;j ¼ vi;j � ½ð1þ cÞ=2�ðvi − vjÞ, where c is
the coefficient of restitution. Amongst the many systems in
this broad class, we note two particular ones. First, self-
gravitating particles in an expanding universe are
described, in certain circumstances, in so-called comoving
coordinates and an appropriate time variable, by the case of
α ¼ 1 corresponding to a simple fluid damping f⃗ ¼ −ηmv⃗
(see e.g., Ref. [15] and references therein). Second, the case
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of gravity with inelastic collisions corresponds to a self-
gravitating granular gas. Martin and Piasecki [16] have
obtained an exact solution of this model for specific regular
initial conditions in the totally inelastic limit, a situation
different to that we will consider below. Let us recall that, in
the absence of gravity, i.e., for a simple granular gas starting
from an homogeneous initial configuration, the kinetic
energy of the system as well as the velocity distribution
function have been shown to obey scaling laws [17], until
the system reaches a collapse time where clusters appear
[18]. An analogy between a self-gravitating system and
granular gases was also considered for cluster formation in
Refs. [19–21].
In the absence of dissipation, the time evolution is

described in the mean field limit and, thus, on time scales
short compared to that on which the full Hamiltonian
evolution drives the system towards equilibrium by the
Vlasov equation (see e.g., Refs. [2,22])

∂tfðx; v; tÞ þ v∂xfðx; v; tÞ þ āðx; tÞ∂vfðx; v; tÞ ¼ 0 (1)

where āðxÞ is the mean-field acceleration given by
āðx; tÞ ¼ g

R
sgnðx − x0Þjx − x0j−ðnþ1Þfðx0; v0; tÞdx0dv0

where fðx; v; tÞ is the mass density in phase space. When
dissipative forces are present, the Vlasov equation is
modified by the addition on the right-hand side of
Eq. (1) of a term denoted Jd½f�, an operator accounting
for the dissipation in the system [23]. For the case of a
viscous damping force, this operator is [24]

Jd;1 ¼ η∂vðvαfðx; v; tÞÞ; (2)

whereas for the case of inelastic collisions it can be
expressed in terms of fðx; v; tÞ (Stosszahl ansatz) [25] as

Jd;2 ¼
N
M

Z
dv1jv − v1j

×

�
fðx; v��; tÞfðx; v��1 ; tÞ

c2
− fðx; v; tÞfðx; v1; tÞ

�
(3)

where v��i are the precollisional velocities that are given by
v��i;j ¼ vi;j � ½ð1þ c−1Þ=2�ðvj − viÞ. To obtain the mean-
field limit of Eq. (3), we rewrite the collision operator as a
series expansion of ð1 − cÞ=2 [26]. After some calculation
and taking the limit N → ∞ at fixed γ ¼ ½ð1 − cÞN�=2,
we then obtain Jd;2 ¼ −∂vða1ðx; v; tÞfðx; v; tÞÞ; where
a1ðx; v; tÞ ¼ ðγ=MÞ R duðu − vÞju − vjfðx; u; tÞ is the ac-
celeration associated with the collisional force. This scaling
ð1 − cÞ ∼ N−1 corresponds to the so-called quasielastic
limit [27,28]. As discussed below in detail, in this limit the
ratio of the two essential time scales of our system, the first
associated with the dissipation of the total energy and the
second with the mean-field dynamics (τmf ∼ 1=

ffiffiffiffiffiffiffi
gρ0

p
,

where ρ0 is the mass density), is independent of N.

We now seek scaling solutions to Eq. (1), using the
following ansatz:

fðx; v; tÞ ¼ M
x̄ðtÞv̄ðtÞF

�
x

x̄ðtÞ ;
v

v̄ðtÞ
�
: (4)

Substituting this in Eq. (1) gives

− ∂tðx̄ðtÞv̄ðtÞÞ
ðx̄ðtÞv̄ðtÞÞ2 Fðy; zÞ − ∂tx̄ðtÞ

x̄2ðtÞv̄ðtÞ y∂yFðy; zÞ − ∂tv̄ðtÞ
x̄ðtÞv̄2ðtÞ

× z∂zFðy; zÞ þ
z∂yFðy; zÞ

x̄2ðtÞ þ gMĀðyÞ
v̄2ðtÞx̄ðnþ2ÞðtÞ ∂zFðy; zÞ ¼ Jd

(5)

where y and z and the rescaled variables [y ¼ x=ðx̄ðtÞÞ,
z ¼ v=ðv̄ðtÞÞ] and ĀðyÞ¼R

sgnðy−y0Þjy−y0j−ðnþ1Þ

Fðy0;zÞdy0dz; furthermore, we have for VDM Jd;1¼
½ðηv̄α−2Þ=x̄�∂zðzαFðy;zÞÞ and for ICM Jd;2¼−½γ=ðx̄2ðtÞÞ�∂z

ðĀ1ðy;zÞFðy;zÞÞ where Ā1ðy;zÞ¼
R ðz0−zÞjz−z0jFðy;z0Þdz0.

These scaling solutions are admitted if it is possible to choose
functions x̄ðtÞ and v̄ðtÞ so that the time dependence of the
coefficient of each term is the same.Comparing, first, the last
two terms on the left-hand side of Eq. (5), we infer the
requirement

v̄2ðtÞx̄nðtÞ ¼ cste: (6)

This means that the virial ratio, defined as R ¼ −2K=nU
where K and U are the total kinetic and potential energy
respectively, is constant. We now assume further that the
system is in a QSS in the limit that the dissipation is absent.
With this assumption, we have that

z∂yFðy; zÞ þ
gM
v̄2x̄n

ĀðyÞ∂zFðy; zÞ ¼ 0; (7)

i.e., the last two terms on the right hand side of Eq. (5) cancel.
Thisalso implies that thevirial ratioR isunity.Physically, this
means we assume that all time dependence of the evolution

FIG. 1 (color online). Left: For the ICM, reduced total energy
EðtÞ=Eð0Þ versus γt=τmf , for the indicated values of γ and
R0 ¼ 0.01. Inset: zoom on the shorter time evolution. Right:
for the VDM, semi-log plot of EðtÞ=Eð0Þ versus t=τmf with the
indicated values of η, and R0 ¼ 0.01.
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arises solely from the dissipation. This corresponds to an
adiabatic limit of weak dissipation inwhich the time scale on
which the dissipation causes macroscopic evolution is
arbitrarily long compared to the time scale associated with
the mean-field dynamics. The scaling solution, thus,
excludes all nontrivial time dependence due to the mean-
field dynamics except its effect in virializing the system. In
particular, doesnot describe thephaseof violent relaxation to
virial equilibrium.Wewill evaluate further below thevalidity
of this crucial approximation.
With the use of Eq. (6) it is simple to infer that the sole

additional requirement on the scaling solution is
v̄ðtÞ−1∂tv̄ðtÞ ¼ −A0ηv̄βðtÞ with β ¼ α − 1, for the VDM,
and v̄ðtÞ−1∂tv̄ðtÞ ¼ −A1γv̄ðtÞx̄ðtÞ−1 ¼ −A1γv̄β with β ¼
ðnþ 2Þ=n for the ICM, where A0 and A1 are dimensionless
positive constants. Integrating these equations, we obtain

v̄ðtÞ ¼ v0

��
1þ sgnðβÞ t

tc

�−1=β
β ≠ 0

e−t=tc β ¼ 0
(8)

where tc is a characteristic time scale. The solutions for x̄ðtÞ
follow from Eq. (6). The case β ¼ 0 corresponds to the
VDMwith α ¼ 1 and the ICMwith n ¼ −2, the trivial case
of a harmonic potential.
For a virialized state, the total energy E ¼ ½1 − ð2=nÞ�K

and so scales as v̄2ðtÞ. For attractive pair potentials with
n < 0, which is the class of long-range potentials we are
considering here (in d ¼ 1), the scaling solution therefore
describes, for cases with β < 0, a system that undergoes a
collapse in the finite time tc. Otherwise, the system
undergoes a monotonic contraction characterized by the
same time but never collapses.
We now return to the essential approximation Eq. (7) that

we have made in deriving the scaling solution. This
corresponds to assuming that τdiss ≫ τmf, where τdiss and
τmf are the characteristic times for, respectively, the dis-
sipation of the system energy E and the mean-field
(Vlasov) dynamics. For the VDM, we have that

dE
dt

¼ −ηhjvjαþ1it (9)

where hXðx; vÞit ¼
R
dxdvXðx; vÞfðx; v; tÞ. Substituting

the scaling solution, in which E ∝ v̄2ðtÞ, in this equation,
we can then infer that

tc ≡ 2E0

ηhjvjβþ2i0
¼ 1

η

�
1 − 2

n

� hv2i0
hjvjβþ2i0

: (10)

For the ICM, a similar relation can be written, the only
difference being that η is replaced by γI0 where I0 is a
dimensionless integral. For both cases, tc diverges as the
inverse of the strength of the dissipation; tc represents the
time scale for dissipation starting from the (arbitrary) time
t ¼ 0. In the scaling solution, the characteristic time for

dissipation of energy starting from an arbitrary time t, thus,
scales as τdissðtÞ ∝ v̄−βðtÞ. For a typical system size x̄ðtÞ,
the mean-field acceleration scales as x̄−ðnþ1Þ and τmf (mean
time for a particle to cross the system) as x̄ðnþ2Þ=2. It follows
that τdiss=τmf ∝ v̄½−βþ½ðnþ2Þ=n��; and therefore, if β > βc ¼
ðnþ 2Þ=n the ratio of these time scales increases as a
function of time. In other words, if β > βc, the scaling
solution drives the system to a regime in which the
approximation underlying it becomes arbitrarily well sat-
isfied. In this case, we then expect that the scaling solution
may be an attractor for the system’s behavior, whereas for
β < βc, the opposite is the case and the scaling solution is at
most expected to represent a transient behavior. The case
β ¼ βc, which corresponds precisely to the ICM, is the
marginal one. In this case, the ratio τdiss=τmf remains
constant in the scaling solution, and one would expect it
to be a transient that persists on a time scale dependent on
this ratio.
To explore the validity of this analysis, we have

performed a numerical study of two one-dimensional
(1D) self-gravitating systems, i.e., the case n ¼ −1 corre-
sponding to the pair potential ϕðxÞ ¼ gmjxj derived from
the 1D Poisson equation ∂2

xϕðxÞ ¼ 2gmδðxÞ, one with the
dissipation of the ICM and the other with that of the VDM
for the case α ¼ 1. In the absence of dissipation, the
equations of motion may be integrated exactly between
particle collisions (equivalent to crossings), and the system
can be evolved using an event-driven algorithm [15,29,30],
which determines the collision times exactly (up to
round-off errors). For the ICM, inelastic collisions are
implemented in an existing code with the appropriate
postcollisional velocities (including the coefficient of
restitution c). For the VDM, an event-driven algorithm
is also implemented as the collision time between particles
in this case can also be computed exactly by finding the
roots of a quintic equation (see Ref. [15] and references
therein). We use “rectangular water-bag” initial conditions;
i.e., velocities and positions are chosen randomly and
uniformly in phase space in ½−v0; v0� × ½−L0=2; L0=2�.
These are fully characterized by the initial virial ratio R0.
We have performed simulations of different sizes
(N ¼ 256;…; 4096), and no noticeable finite effects have
been observed. All quantities have been averaged over 100
independent realizations for the ICM and 50 for the VDM
(which is less noisy). For both models, the simulation is
interrupted when the difference between two possible
collision times becomes smaller than the accuracy of the
computer.
We define the mean-field time as τmf ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=ðgNÞp

and
recall the behavior of this system in the absence of
dissipation from initial conditions of this kind (as detailed,
e.g., in Ref. [31]): it evolves on a time scale of order
10–100 τmf towards a QSS, in which the virial ratio R is
unity. Monitoring R in the present case (with dissipation),
we find essentially identical behavior but, as expected, a
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very different behavior for the energy. The left panel of
Fig. 1 shows, for the ICM, the normalized energy as a
function of the dimensionless time γt=τmf, for an initial
virial ratio R0 ¼ 0.01 and the different given values of γ; in
the right panel, the same quantity is plotted versus t=τmf,
for the VDM with ητmf ¼ 0.012, 0.037. We observe
excellent agreement with the scaling solutions: for the
ICM, the energy decay is fitted by ½1 − ðt=tcÞ�δ with
δ ¼ 2.00� 0.01; for the VDM, the energy decay is fitted
by EðtsÞ=Eð0Þ ¼ exp½−ð2=3Þλðt=τmfÞ� with λ ¼ ητmf, as
predicted by the scaling solution [Eqs. (8) and (10)], to
10−4. The inset of Fig. 1 shows small deviations from
the scaling behavior at short times, associated with the
virial oscillations during the initial violent relaxation.
The velocity and position distributions versus appropri-

ate rescaled variables are shown in Fig. 2 at different times,
for the ICM with R0 ¼ 1 and for the VDMwith R0 ¼ 0.01.
The superposition of the curves illustrates the accurate
description of the kinetics by scaling QSS (in the lower
panels the blue curves correspond to t=τmf ¼ 10 in the
phase of the violent relaxation). Moreover, one observes
significant deviations from a Gaussian shape of the dis-
tribution corresponding to the existence of a “core-halo”
structure in the QSS [32,33].
The ICM is a marginal case for the validity of the

approximation in which we obtained the scaling QSS,
whereas for the VDM with α ¼ 1 and n ¼ −1 (i.e.,
βc ¼ −1), we expect it to become exact asymptotically.
To quantify deviations from the scaling QSS, it is conven-
ient to monitor the dimensionless quantity [31]

ϕ11 ¼
hjxjjvji
hjxjihjvji − 1 ¼

R jxjjvjfdxdvR jxjfdxdv R jvjfdxdv − 1; (11)

which provides a measure of the correlation between the
spatial and velocity variables. For conservative self-gravi-
tating systems, ϕ11 can be interpreted as an order parameter
for the QSS, which goes to 0 as the system goes to thermal

equilibrium [31]. Inserting Eq. (4), in Eq. (11), we see that
ϕ11 is constant in time also in the scaling QSS: the
evolution of the system is through a sequence of QSS
with identical correlations.
Figure 3, right panel, shows the evolution of ϕ11 for the

ICM starting from R0 ¼ 0.01, 0.1, and 1 and for the three
different values of γ. We have used here this rescaled time
γt=τmf because we observe that it gives a good collapse of
all curves; in the left panel, the result for the first case
(R0 ¼ 0.01) is shown without this rescaling. For the VDM
(not shown here) ϕ11 remains constant (after the initial
violent relaxation). We observe that while in the case of
R0 ¼ 1 ϕ11 is almost constant, visible deviations are
evident for the two other cases, with evolution away from
the scaling setting in fastest for the case R0 ¼ 0.01.
Similarly, the space and velocity distributions deviate
progressively from the scaling solutions for R0 ¼ 0.1,
0.01 (not shown here). In both cases, the system energy
decreases as predicted by the scaling solution. Moreover,
this evolution appears to depend only on the QSS attained
(which is different for each R0) and on γ through the
rescaled variable. Thus, as the total energy goes to 0,
inelastic collisions drive the system through a given family
of ever more correlated QSS. It implies that the system
never shows any tendency to drive the system towards a
Maxwell-Boltzmann distribution of velocities (nor towards
the spatial distribution of the thermal equilibrium of the
model), despite the effective stochasticity of the inelastic
collisions. This contrasts to what is observed in a stochas-
tically perturbed HMF model in Refs. [12,13]. This
tendency towards more correlated states can be interpreted
as follows: for R0 ≪ 1, the violent relaxation drives the
system to a core-halo structure (see Refs. [3,31,32]),
whereas for R0 ≃ 1, the QSS is rather homogeneous in
phase space. For the ICM, the (kinetic) temperature of the
core decreases more rapidly than that of the halo; in the
VDM, on the other hand, the systems cools down uni-
formly. Further it may be, as observed in three-dimensional
gravitating systems [34], that inefficiency of energy
exchange between the core and halo impedes relaxation
towards thermal equilibrium.

The authors thank C. Rulquin for useful remarks.

FIG. 2 (color online). Velocity (left panels) and position (right
panels) distributions as a function of rescaled variables, for the
ICM with γ ¼ 0.01 at different times t=τmf ¼ 10, 31, 53, 74, 95
and R0 ¼ 1 (upper panels) and for the VDM with ητmf ¼ 0.037
and R0 ¼ 0.01 (lower panels) at t=τmf ¼ 10; 20;…; 100. In the
lower panels, the curves which do not superpose correspond to
t=τmf ¼ 10, in the phase of violent relaxation.

FIG. 3 (color online). Left: ϕ11 versus γt=τmf for γ ¼ 0.01,
0.005, 0.001 and R0 ¼ 0.01 (three upper curves), R0 ¼ 0.1 (three
middle curves), and R0 ¼ 1 (three lower curves). Right: ϕ11

versus t=τmf in a semi-log plot for R0 ¼ 0.01 and γ ¼ 0.001 [blue
(right)], 0.005 [green (middle)], 0.01 [red (left)].
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