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We analyze several high dimensional generalizations of the toric code at a nonzero temperature. We find
that in a large enough dimension, there can be a distinct separation between the critical temperature Tc,
given by thermodynamic singularities, and the percolation temperature Tp, given by the percolation of
defects. We argue that the regime Tp < T < Tc is a range of temperatures where a self-correcting quantum
memory can operate despite having percolating defects. We present analytic arguments and numerical
evidence in support of this scenario, including a mean-field treatment and Monte Carlo simulations. Near
Tc, simulations observe a large hysteretic behavior, which may have applications by allowing the self-
correcting phase to survive in a “superheated” regime.
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The classical Ising model is the prototypical example of
a “self-correcting” memory. In two or more dimensions, in
the low temperature ferromagnetic phase, the system can
store a single classical bit for an exponentially long time in
the sign of the global magnetization. In contrast, many
proposals to protect quantum information against noise
require active error correction by an external classical
control [1]. Other proposals like low-dimensional topo-
logical quantum memories must avoid thermally excitating
anyons [2], requiring a temperature that tends to zero as the
inverse logarithm of the system size.
Remarkably, a topological memory in four dimensions

(4D) [3] self-corrects up to a fixed nonzero temperature Tc,
describing a transition between a high-temperature disor-
dered phase, and a low-temperature phase capable of
topologically encoding the quantum state. There have been
extensive searches for lower-dimensional self-correcting
memories [4], including the cubic code [5], though it still
does not have a lifetime diverging arbitrarily largely with
system size at T > 0 [6]. The question of true self-
correction in D < 4 is still an outstanding open problem.
However, it has recently been proposed that higher-
dimensional toric “surface” codes could be artificially
constructed [7], e.g., by building long-range connections
between local components in a superconducting quantum
circuit, motivating us to analyze in more detail the proper-
ties of higher dimensional models.
Conventional approaches use the percolation of ther-

mally activated defects to estimate the Tc where the
self-correcting phase is lost [8]. Surprisingly, using a
combination of numerical simulation and gauge-invariant
mean-field theory, we find that the phase transition temper-
ature Tc of some higher dimensional toric codes is not the
same as the temperature Tp for percolating defects, and that

error correction is possible even when defects percolate. We
show analytically that the ratio Tc=Tp can diverge as D
becomes large, allowing error correction over an unexpect-
edly large range of temperatures. Further, Monte Carlo
simulations find a large region of hysteresis, where the low-
T phase is metastable well above Tc.
(p, q) Toric codes.—We begin by briefly describing the

formalism for generalizations of the toric code to a hyper-
cubic lattice in D dimensions. We refer to the different
codes as (p, q) codes, with pþ q equal to the spatial
dimension D. In this notation, the original toric code is a
(1,1) code while the 4D self-correcting code is a (2,2)
code. Following the usage in topology, we refer to the
vertices of the lattices as 0-cells, the edges of the lattice as
1-cells, the plaquettes as 2-cells, and so on, up to D-cells.
We use Nk to denote the number of k-cells. Note that
Nk ¼ ND−k; this equality is related to a duality between (p,
q) codes and (q, p) codes. In a (p, q) code, there is
one spin 1=2 (or qubit) on each p-cell. The Hamiltonian
is H ¼ JAHA þ JBHB, with JA, JB being positive scalars
and

HA ¼ −X
cpþ1

Y

i∈cpþ1

Szi ; HB ¼ −X
cp−1

Y

i∋cp−1
Sxi : (1)

In HA, the sum is over pþ 1-cells, denoted cpþ1, and the
product is over p-cells, labeled by i, with i ∈ cpþ1 meaning
that i is attached to cpþ1. The notation inHB is similar, with
the sum being over p − 1-cells, cp−1.
The partition function ZðβÞ ¼ tr½expð−βHÞ� decom-

poses exactly as

ZðβÞ ¼ ZAðβÞZBðβÞ2−Np; (2)
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where ZA ¼ tr½expð−βHAÞ� and ZB ¼ tr½expð−βHBÞ�.
Hence, we can compute ZðβÞ by calculating ZA and ZB
separately, e.g., using classical Monte Carlo calculations.
In this Letter, we focus on (1, D − 1) codes to simplify

the numerics. In fact, these codes are not self-correcting
quantum memories—they can self-correct against spin flip
errors but not against dephasing errors (Sz errors). A
(2, D − 2) code can self-correct against both types of
errors for D ≥ 4 [9], and we expect it to have similar large
D behavior. The self-dual code is the (D=2, D=2) code—it
may have very different large D behavior which we will
address in future. In this Letter, we only simulate HA,
where the spins are on 1-cells (edges) and the interactions
are on 2-cells (plaquettes); i.e., we study self-correction
against spin flip errors only.
The (0, D) code is the Ising model, with no ability to

correct against dephasing errors, being only useful as a
classical memory. Here, the phenomenon that the perco-
lation and phase transition temperatures are distinct is well
established. It has been proven that Tp ∼ D= logðDÞ for
large D [10] while Tc ∼ D in agreement with mean-field
theory (MFT) [11], and so for sufficiently large D,
Tp < Tc. Further, numerical simulations [12] show that
this occurs already in 3D. This difference between Tp and
Tc means that the Peierls argument [13] cannot correctly
predict Tc for the Ising model.
Defects, percolation temperature, and relation to error

correction.—In the Ising model, the low temperature
expansion sums over domain walls, called Peierls contours,
between up and down spins, with a weight dependent on
the area of the contour. It is easier to understand these
contours in a dual version of the Ising model, a (D, 0) code,
where the spins are on the D-cells, and the interactions are
on the D − 1-cells between a pair of D-cells. A spin
configuration assigns þ1 or −1 to each D-cell and the
set of interactions which are unsatisfied is the boundary of
this configuration. Since the set of unsatisfied interactions
is a boundary, and the boundary of a boundary vanishes, the
set of unsatisfied interactions indeed gives closed surfaces.
For these surfaces made of D − 1-cells, we regard two
D − 1-cells as being neighbors if they both attach to the
same D − 2-cell. For the (0, D) code, the defects are 1-cells
instead, and two 1-cells are neighbors if they both attach to
the same 2-cell.
For a (1, D − 1) code, the defect surfaces are sets of

2-cells, with two 2-cells being neighbors if they both attach
to the same 3-cell (see Fig. 1). In a dual picture, defect
surfaces are now closed D − 2-dimensional surfaces.
Reference [10] upper bounds Tp by choosing a subset of

Peierls contours which can be counted more easily. These
contours are obtained by constructing a sequence of k spins
starting from a given spin (say, at the origin of an infinite
hypercubic lattice), flipping that spin, and then flipping
each next spin in turn by shifting by distance 1 in any of the
positive coordinate directions. For the given starting spin,

there are Dk−1 such sequences of spins giving entropy
∼k logðDÞ, while the area of the contour is proportional to
Dk. So for β ≲ logðDÞ=D, the energetic cost does not
suppress the appearance of these chains. This bound
generalizes straightforwardly to our problem, giving the
same scaling Tp ≲ D= logðDÞ.
We show below that for the (1, D − 1) code for large D,

Tc ∼ D, so Tc > Tp for sufficiently large D. Thus, just as
the Peierls argument cannot correctly predict Tc in the Ising
model, arguments based on percolating defects cannot
correctly predict Tc of certain high dimensional toric
codes. However, we claim that Tc, rather than Tp, deter-
mines the upper temperature at which the code is a self-
correcting memory. To act as a self-correcting memory, we
need to define a recovery procedure. Then, we are
interested in the procedure of encoding information into
the memory at T ¼ 0, heating the memory to some T < Tc
at which it stays for some time, and finally trying to recover
the information (see Fig. 2). A recovery procedure involves
measuring the set of defect plaquettes, called the “syn-
drome”, and then applying spin flips to correct the defects
before reading the encoded information. Since the spin flips
arising from noise and from the recovery map one ground
state to another, they are a 1 cocycle. If the 1 cocycle is
topologically trivial, then the information can be recovered.
For T < Tc, the dynamics are not critical and the system
relaxes quickly; thus, in the thermodynamic limit, we
expect that the cocycle will be topologically trivial.
Numerical experiments below confirm that there indeed
is a long lifetime in the low temperature phase; in these
experiments, the system is heated from T ¼ 0 to T > 0,
then cooled back to T ¼ 0 and finally the information is
read. The cooling to T ¼ 0 defines a recovery procedure by
a randomized algorithm because, after returning to T ¼ 0,
we have returned to a state with no defects. Importantly, the
Monte Carlo cooling back to T ¼ 0 can be implemented
only by measuring the syndrome to determine the spin flip
probabilities without having to measure the actual value of
the spins (which would disturb phase information).

FIG. 1 (color online). Defect clusters in the 3D code. (a) A set
of percolating (left) and nonpercolating (right) clusters of defect
plaquettes in HA, defined as being 2-cells that have an odd
number of Ising variables Szi . (b) The defect surfaces in the dual
picture.
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Mean-field phase diagram for (p, q) codes.—We use
mean-field theory (MFT) for Hamiltonian HA to under-
stand large D behavior. In contrast to Ref. [11], no results
will be proven on Tc, but the MFT is still likely exact at
large D. From here on, since we consider a Hamiltonian
which involves only Sz operators, all our calculations are
classical, considering only operators diagonal in the Sz

basis, and we set JA ¼ 1. The natural starting point for
MFT is a factorized probability distribution, PðfSzigÞ ¼Q

ipiðSzi Þ, giving the probability for a spin configuration as
a product of the probabilities for each spin, as used in
Ref. [14] for the Z2 gauge theory.
However, this method does not respect gauge invariance.

While this invariance only slightly changes Tc for the (1,
D − 1) code, it gives a large change in Tc for (D=2, D=2)
codes where the gauge group is bigger. Gauge invariance is
the property that flipping all spins on p-cells attached to
any given p − 1-cell does not change the energy. This leads
to an extensive ground state entropy, while there is no way
to obtain an extensive entropy in a zero temperature mean-
field state. By counting dimensions in a chain complex, the
ground state degeneracy of HA is 2Np−1−Np−2þNp−3−����N0 for
a (p, q) code, up to Oð1Þ corrections due to any nontrivial
homology of the system.
To make a gauge invariant MFT, we add constraints to

HA to fix a unique representative for each gauge group
orbit. For a (1, D − 1) code, we use the gauge invariance to
fix Sz ¼ þ1 for all 1-cells oriented along some given lattice
direction, which we call the x direction. We use a product
ansatz for the remaining spins. We consider only infinite
systems here; for a finite system with linear size L with
nontrivial homology, we can fix all but a 1=L fraction of the
spins. Then the Hamiltonian has both four-spin interactions

(on plaquettes on which none of the 1-cells are oriented in
the x direction) and two-spin interactions (on plaquettes
with two 1-cells in the x direction which contain only two
unfixed spins). The mean-field equations are

hSzi ¼ tanh½βð2hSzi þ 2ðd − 2ÞhSzi3Þ�; (3)

where hSzi is the average of Sz on the unfixed 1-cells, as
can be found by minimizing the variational free energy.
The MFT gives a variational lower bound for the free

energy of the system with the spins fixed; subtracting
ð1=βÞN0 logð2Þ from this to account for gauge degeneracy
gives a lower bound on the free energy −ð1=βÞ logðZAÞ.
Thus, one could consider several different gauge fixings
and choose the one that leads to the lowest free energy. We
do not do this here, but it will be useful for the MFT for
(D=2, D=2) codes where the ground state degeneracy is
much larger. For (1, D − 1) codes, the ratio between
number of gauge group generators and number of spins
goes to 0 as D → ∞, while for (D=2, D=2) codes the ratio
approaches 1=2.
The mean field equations have a trivial solution with

hSzi ¼ 0 and also have a nontrivial for low T. For large D,
the nontrivial mean-field solution exists for T ≤ D=
1.008…. Tc is strictly smaller than this temperature, as Tc
is determined by the crossing of the free energies of the two
solutions. The free energy of the trivial solution is
−TN1 logð2Þ. The free energy of the nontrivial solution
requires numerical calculation. For an analytic estimate, we
use the free energy of the ground state sector, −N2−
TN0 logð2Þ ¼ −½ðD − 1Þ=2 − T logð2Þ=D�N1, accounting
for gauge degeneracy, giving crossing of the free energies at

Tc ¼ D=½2 logð2Þ�: (4)

Corrections to this from numerical solution of the equations
are very small as hSzi is close to 1 at the given Tc. The ratio
Tc=D in simulations is less than this value, but approaches it
as D increases (see Fig. 4).
Monte Carlo measurement of Tc and hysteresis.—Using

Metropolis Monte Carlo calculations, we simulate HA in
Eq. (1) on LD size lattices with periodic boundary con-
ditions. Thermodynamic estimators, e.g., the specific heat,
demonstrate that the (1, 2) code has a continuous critical
point in the same universality class as the 3D Ising model
[15]. For D ≥ 4, we observe a strongly first order phase
transition, with hysteretic behavior as illustrated in Fig. 2.
To obtain an accurate estimate of Tc, one must therefore
measure the crossing of two free energy branches, obtained
by integrating the internal energy from high and low
temperature (see inset of Fig. 3). This procedure accurately
reproduces Tc for 3D and 4D (known from duality argu-
ments [14] to be 1.314 and 2.269, respectively) to three
decimal places with small system sizes. Figure 4 shows the
results for Tc as a function of D, as well as a typical range
of hysteresis for L ¼ 4.

FIG. 2 (color online). Wilson loop in x direction for L ¼ 4,
D ¼ 6. Each line is a singleMonte Carlo run, which was warmed
from T ¼ 0 to Tmax, then recooled to T ¼ 0. Each data point is
the average over two thousand Monte Carlo steps at each
temperature. Averaging over many Monte Carlo runs would give
a purple curve returning to 0 at T ¼ 0. The region above
Tc ¼ 3.80 is shaded. Inset: internal energy for D ¼ 4 and
D ¼ 6. For L ¼ 4, D ¼ 6, the hysteresis jump occurs at T ¼ 4.2.
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We illustrate how one can take advantage of the large
hysteresis region to perform error correction even above Tc,
by directly measuring the topological bit encoded in a
Wilson loop, defined as Wα ¼

Q
L
i S

z
i for i in a closed line

in direction α (where 1 ≤ α ≤ D). In Fig. 2, we plot hWxi
for two simulations—one where the temperature is
increased from T ¼ 0 to some Tmax > Tc but less than
the hysteresis jump, the other for a Tmax greater than the
hysteresis jump. Upon cooling from Tmax to T ¼ 0, we
observed a near 50% probability that the topological bit
was destroyed when Tmax was above the hysteresis jump
(only one run is illustrated), while for the lower Tmax, the bit
was always retained on the time scale of the simulation.
Thus, while we expect that the memory lifetime is finite in
the thermodynamic limit for Tc < T < Tmax, the numerical
experiments show that information is retained on a very
long time scale (much longer than 107 Monte Carlo steps
per spin at T ¼ 4.2 and L ¼ 4).
Monte Carlo measurement of percolation.—

Monte Carlo simulations are able to give clear estimates
of quantities relating to percolation, through measurement
of the size of clusters of defect 2-cells (plaquettes with
an odd number of Sz ¼ 1 on the corresponding 1-cells).
Two 2-cells are defined as neighboring if they share the
same 3-cell (see Fig. 1). We use this definition to measure
quantities related to the size and topology of each defect
cluster. In order to identify the unique clusters in a
simulation-cell with a given number of defect 2-cells,
we developed a variation of the standard Hoshen-
Kopelman [16] algorithm for general higher-dimensional
networks (see, e.g., Ref. [17]). Using this, we measure the
Monte Carlo average of the largest cluster size, hAi, as a
function of temperature.
As illustrated in Fig. 3, there is a linear onset of the largest

cluster size at some temperature—a clear signof percolation.

To take advantage of hysteresis of the low-temperature
phase, simulations were started at T ¼ 0 and warmed
until the discontinuity in the energy was observed. The
percolation transition Tp is determined by extrapolation of
the straightest region of the data (Fig. 3). The linear fit
matches MFT critical exponents for percolation expected in
D ≥ 6. For D ≥ 6, we observe a clear separation of Tp
and Tc. For D ¼ 5, we also find a percolation transition in
the metastable regime of the low temperature phase, but it
appears thatTp ¼ Tc towithin simulation errors. ForD ¼ 4,
no sign of percolation below Tc was seen.
Discussion.—We studied high-dimensional toric codes,

finding that self-correction occurs well above Tp, where
percolating defects exist. Simulations also find a very large
hysteresis region, with the low temperature phase stable on
numerically accessible time scales well above the true Tc.
In physical implementations, for example, using super-
conducting circuits [7], active error correction reading error
syndromes [18,19] gives nonthermal distributions, but
these phenomena may also occur there.
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