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In 1945, Dirac attempted to develop a “formal probability” distribution to describe quantum operators
in terms of two noncommuting variables, such as position x and momentum p [Rev. Mod. Phys. 17, 195
(1945)]. The resulting quasiprobability distribution is a complete representation of the quantum state and
can be observed directly in experiments. We measure Dirac’s distribution for the quantum state of the
transverse degree of freedom of a photon by weakly measuring transverse x so as to not randomize the
subsequent p measurement. Furthermore, we show that the distribution has the classical-like feature that it

transforms (e.g., propagates) according to Bayes’ law.
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When formulating quantum theory, many physicists
sought a classical interpretation of the object at its center,
the quantum state. The most well-known of these is the
Wigner function W(x, p), an attempt to produce a joint
probability distribution for a particle’s instantaneous
momentum and position [1]. These “phase-space” distribu-
tions necessarily violate many of the properties that classical
probability distributions must obey. However, they are
useful for visualizing concurrent momentum and position
features in quantum states, which might be obscurely
encoded in the phase of the wave function or the off-diagonal
elements of the density matrix. Additionally, a nonclassical
hallmark in the distribution (e.g., negative probabilities) can
be used to identify intrinsically quantum states [2]. It is
remarkable that even though the quantum state has been an
overwhelmingly successful concept and tool for almost a
century, our understanding of its nature is still being refined
[3]. These distributions have contributed to this refinement
[4] and have helped demarcate the boundary between
classical and quantum phenomena [5].

In quantum physics, Heisenberg’s uncertainty relation
implies that a precise joint measurement of position X and
momentum P is impossible. Contrast this with classical
physics, in which a particle has a definite and unique
position x and momentum p at any moment in time,
thereby defining its “state.” Measuring a classical particle’s
state then just entails a joint measurement of X and P.
Equivalently, one can measure whether a particle is at a
particular point (x, p) in “phase space” (i.e., X-P space) and
then raster over x and p. And, if the particle is produced in a
random process such that it is in a random distribution of
states, then repeated measurements at each point will let us
find the average result: the probability for the particle to be
at that point P(x, p), a phase-space probability distribution.

Consider what the quantum version of this measurement
would be by beginning with the classical description of this
phase-space point, a two-dimensional (2-d) Dirac delta
function centered at x and p, 5% (X — x, P — p). Crucially,

0031-9007/14/112(7)/070405(6)

070405-1

PACS numbers: 03.65.Ta, 03.65.Wj, 03.67.-a, 42.50.Dv

there is no unique nor general method for translating a
classical observable to its quantum equivalent [6]. For
example, since they do not commute, one must choose
an ordering O of quantum operators X and P with which
to replace classical variables X and P, Ay(x,p)=
{6®(X —x,P—p)},. In this Letter, we experimentally
demonstrate the measurement of this operator for the
antistandard ordering (i.e., P is always to the left of X),
A,s(x,p) = 6(P—p)5(X —x) =m,m,, where t,, =|m) (m|
is a projector. Numerous other orderings are possible,
and each corresponds to a distinct point operator A,
which may or may not describe a physical measurement (an
“observable”). The average result of such a measurement
then would be the quantum version of our classical state
measurement procedure outlined above.

As usual, this average result is equal to the expectation
value of the operator, (Ao (x, p)) = Tr[A(x, p)p], where p
is the density operator describing the quantum state of
the particle. It may come as a surprise that this simple,
classically motivated measurement procedure will com-
pletely determine the quantum state. Whereas classically it
gives the probability P(x, p), the quantum version gives a
“quasiprobability” Py (x, p) = (Ay) [7,8], where O is the
reverse ordering to O. That is, for typical orderings O, the
average result is a phase-space quasiprobability distribution
in x and p equivalent to the state of the particle.

From this perspective, the Wigner function corresponds
to a direct measurement of an (x, p) point observable that
has been symmetrically ordered (i.e., the “Weyl” ordering
W, with W = W): Ay = R, (x, p)/x [9], where R, is the
parity of a particle about point (x, p). The normal N ordering
(a' to the left of a, where a is the usual lowering operator
a = X + /P ) and its reverse, antinormal AN, correspond
to the other two well-known quasiprobability distributions,
the Husimi Q function [10] [P y, Ajy(@a=x+ip) =
|a)(a|/x, i.e., a projection onto a coherent state |a) [7]]
and the Glauber-Sudarshan P distribution [11] (P4y, Ay is
unphysical). The Wigner and Q functions have been directly
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measured in various physical systems [12], including the
transverse state of a photon [13].

In 1945, Dirac wrote “On the analogy between classical
and quantum mechanics,” [14] in which he introduced what
we call the “Dirac distribution” as a classical-like repre-
sentation of a quantum operator, such as the density operator
p. Over the past 90 years, this distribution has been
repeatedly rediscovered [15,16]. It has since been realized
that the Dirac distribution is Pg(x, p), the standard ordered
quasiprobability distribution and its complex conjugate is
Pas(x, p) [7,17,18]. Despite being the product of one of
the founders of quantum theory, there has been little
experimental investigation of the Dirac distribution. The
impediment has been that A,g = 7,7, is non-Hermitian
and thus should not be an observable. Physically, this is
enforced by the fact that a measurement of t, = §(X — x)
will disturb and, hence, invalidate the subsequent meas-
urement of 1, = §(P — p), making a joint measurement
impossible.

Measurement-induced disturbance can be minimized in
quantum physics by: (1) lowering the precision, 5(x) — Ax,
and (2) decreasing the certainty of the measurement,
Prob (Xyytem [ *measurea) << 1. An example of the second
approach is weak measurement: by reducing the coupling
between the system and the measurement apparatus, the result
from any one trial becomes uncertain [19]. Reducing the
coupling similarly reduces the disturbance (i.e., backaction).
Moreover, by averaging over many trials, an average result
can still be found to arbitrarily low uncertainty. Remarkably,
the Dirac distribution can be measured simply by replacing
the first measurement by a weak measurement [20] of =,,
as we showed in Ref. [21] (see also the related work [22]).
We termed the average joint result of this weak-strong
position-momentum measurement the “weak average.” In
the zero-coupling limit, it is [21]

(mymy), = Tr[r,m,p] = (Ass(x, p)) = Ps(x, p), (1)

where Py is the Dirac distribution (see Supplemental Material
[23]). The superscripts s and w denote strong (i.e., normal)
and weak measurements, respectively. (From here on, we
omit the S subscript as we will deal exclusively with the Dirac
distribution.) As an expectation value of a non-Hermitian
operator, the weak average is complex in general [24] (the
meaning of this will later be explained using our specific
experiment as an example). It follows that, unlike the Wigner
function and other aforementioned quasiprobabilities, the
Dirac distribution is complex.

The Dirac distribution P(x, p) possesses the key feature
that it can be manipulated according Bayes’ theorem
despite the fact that it is not a true probability [25,26].
For example, we could calculate the conditional quasi-
probability of x given p: P(x|p) = P(x, p)/P(p), where
P(p) = (my), = P(p) is defined in analogy to the weak

P )
average. One could also directly measure P(x|p) by

following our naive procedure above but only keeping
the results for X in those cases where P = p. For
p =0, this is a succinct description of our previously
introduced procedure to directly measure the quantum
wave function W(x) [27]. In this light, one would write
U(x) « P(x|p = 0), which provides wave function with a
pithy description: It is the quasiprobability of x given that p
was found to be zero.

Unlike our wave function measurement procedure [27],
the measurement of P(x, p) can also determine the state of
a system that is “mixed.” i.e., one with classical noise or
that is entangled with other systems. In this case, the state
is described by a density operator p rather than a wave
function ¥(x) (i.e., a “pure” state).

As an example, we measure the Dirac distribution of the
quantum state corresponding to the transverse position of a
photon for mixed and pure states. We clarify what we mean
by the photon’s quantum state in the Supplemental Material
[23]. Recent work has measured the Dirac distribution in a
discrete system [28] but only for the pure case, and only in a
simple two-level system. Shown in Fig. 1, our experimental
setup builds on the one in Ref. [27]. Our photons are
produced by an attenuated laser (wavelength = 780 nm)
and coupled into a single-mode fiber. Although we do not
use single-photon states, one can say that every photon that
exits the fiber output will have the same transverse state;
they form an identical ensemble of particles. The photons
are linearly polarized and collimated by a convex lens
(achromat, focal length f = 30 cm, diameter d = 5 mm)
and sent through an aperture (x x y dimensions =
44 mm x 2 mm). Unlike in Ref. [27], just before the lens,
we introduce phase noise by rotating a4 mm thick glass plate
by 4 deg about a horizontal rotation axis at 11 Hz, thereby
generating many waves of phase delay. The plate extends
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FIG. 1 (color online). Experimental setup to directly measure
the Dirac quasiprobability distribution P(x, p) of the transverse
state of a photon. Photons emerge from a single-mode fiber and
are collimated to produce an identical ensemble in an initial pure
state. This is optionally transformed to a mixed state by noise
introduced by an oscillating glass plate. A weak measurement of
transverse position 7, = |x)(x| is implemented by a small
polarization rotation ¢ = 12.92° created by a quartz sliver at
x. This weak measurement is read out jointly with the transverse
momentum p by using a camera, polarizer, and quarter-wave
plate in the Fourier transform plane to measure
(m,6~) = P(x, p) sing. We repeat this measurement after dis-
placing the camera from the Fourier transform plane by Az
in order to investigate how the distribution propagates in space.

070405-2



PRL 112, 070405 (2014)

PHYSICAL REVIEW LETTERS

week ending
21 FEBRUARY 2014

only over one half of the transverse state. With the glass
stationary, the transverse state’s phase is discontinuous at
the position of the plate edge. With it oscillating, the two
halves of the state are completely incoherent over the time
scale of our measurements and, thus, the state is mixed.

We divide the weak measurement of 7, = |x)(x| into
two stages: coupling and readout. The coupling stage
occurs just after the collimating lens. This is the plane
in space at which we measure the Dirac distribution of the
photon ensemble. Here, a quartz sliver (width Ax = 1 mm)
rotates the photon polarization (initially 0°) to ¢ deg at
position x. For ¢ = 90° this would be a strong measure-
ment, whereas by setting ¢ < 90° our measurement
becomes weak. The sliver is also slightly tilted about the
x axis in order to null any phase shift it induces. As
described in Ref. [27], we can read out by measuring
(n¥) = ((sloxls) — i(slle,|s))/ singp = (s|67|s)/ sin ¢,
where [s) is the polarization state of the photon, 6, and o,
are the Pauli operators, and 6~ = 6, + i6, is the lowering
operator [29]. The real part and imaginary parts of the weak
value are proportional to the shift from zero of the average
value of 6, and 6, respectively. Thus, as expected the
two parts separately appear in conjugate variables of our
measurement apparatus, that is, in the linear and circular
polarizations.

In order to perform a joint measurement of 7,7, we
must make polarization measurements at each momentum.
To do so, a lens (achromat, fgr = 1 m,d = 5 cm) is placed
one focal length after the sliver. The Fourier transform (FT)
of the quantum state forms in the plane one focal length
past the lens. Consequently, the transverse position xgr in
this FT plane is proportional to the transverse momentum p
of the photon at the sliver. We magnify (M = 4.935) by
another lens (f = 35 mm, d = 2.5 cm) so that the final
scaling is p = xgph/(fgrMA), where h is Planck’s con-
stant. To read out (m}') we project onto a circular or linear
polarization by inserting a quarter-wave plate (lambda/4)
and/or polarizer (Pol, Nanoparticle Linear Film Polarizer,
Thorlabs LPVIS50) just before the magnifying lens. Then,
position and momentum are jointly measured by measuring
nm,6~. We do so by recording the average number of
photons N, ; arriving at each transverse position xgp on
a camera sensor (Basler acA 1300-30 um, pixel size:
3.75um x 3.75 ym, x X y array size: 1296 x 966, 12 bit)
for two pairs of polarization measurements: j = 45° and
—45° polarizations and right- () and left-hand (O)
circular polarizations. For ¢ <« 90°, the differences in each
pair are proportional to the real and imaginary parts of the
Dirac distribution,

~ Np’450

— N, 45 N,5—N
P(x,p)singo:N —Q—Np’ B jeO 2.0
p.45° p,—45°

NPO "’"Np,o’

2)

which is just (m,6~). Each polarization measurement is a
1.8 s camera exposure in which we average along the y

dimension to arrive at a vector N, ;. We take the mean of
the weak average over 10 scans of x. _

We directly measure the Dirac distribution P(x, p) for
the transverse quantum state by measuring these polariza-
tion differences for every p as a function of the sliver
position x, which we move in steps of 1 mm across the
aperture of the collimating lens. The insets of Fig. 2 plot
this pair of polarization differences as the real and imagi-
nary parts of P(x, p) according to Eq. (2). Figures 2(a) and
2(b) display the measured Dirac distribution for the case
where the glass plate is stationary (pure state) and oscillat-
ing (mixed state), respectively. As can be seen in the phase
plots (lower plots), there is a state-independent phase of
exp(—ixk), inherent to the Dirac distribution, imposed on
the underlying 2-d form of the state in (a) and (b). This
overlay phase structure allows one to immediately see
phase jumps, such as the one in the pure state (a) at x =
25 mm (the glass edge). In contrast, in the mixed state (b),
the phase fringes on either side of x =25 mm are unre-
lated, a signature of the lack of phase coherence across this
point. Looking now at the magnitude (upper plots), both the
mixed and pure states exhibit a depression at x = 25 mm,
likely due to photons being scattered out of the apparatus
by the glass edge. In the momentum direction, the width of
the mixed state is broader than that of the pure state, as
expected due to the reduced spatial coherence of the former.
This is accompanied by a decreased magnitude since the
distribution is normalized to one. These distinctive features
suggest that the Dirac distribution provides a useful way to
visualize key characteristics of pure and mixed quantum
states.

The Dirac distribution is related in a simple way to
the position density matrix of the state, p(x,x') =

(x|p|x') = FT[P(x, p) exp(ipx/h)](x"), where the Fourier

@) Rre®) Im(®) (b) Re® Im(P),

S22 TN O
phase (rad)

0 Al
magnitude

FIG. 2 (color online). Directly measured Dirac distributions for
(a) pure and (b) mixed states. In both (a) and (b), the left and right
insets are the directly measured real and imaginary parts of the
Dirac distribution P(x, p). From these, we calculate the magni-
tude (upper plot) and phase (lower plot) of the distribution.
Transverse x corresponds to the position of the quartz sliver (i.e.,
|x}{x|); transverse k = p/h is the transverse wave vector.
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FIG. 3 (color online). Density matrices p for (left plots) pure
and (right plots) mixed states, calculated from data presented in
Fig. 2. The upper plots and lower plots correspond to the real and
imaginary parts of p, respectively. Since we are not in the limit of
a zero interaction-strength measurement (¢ = 0), there will still
be some backaction due to the measurement. While in the Dirac
distribution this leads to minor offsets P(x, p) — P(x, p) —
Prob(x)(1 — cos(¢)) everywhere, in the density matrix it leads
solely to a suppression, by cos(¢), of the diagonals, which we
correct for in this Figure (see the Supplemental Material for
details [23]).

transform FT is performed with respect to momentum p
[18]. In Fig. 3, we plot the position density matrix for each
of the Dirac distributions from Fig. 2. For the pure state
of Fig. 3(a), the hard edges of the aperture form a square
outline in p and the phase jump now appears at both
x =25 mm and x' = 25 mm. Strikingly, in the mixed state
in Fig. 3(b) the off-diagonal regions for x <25 mm,
x' > 25 mm, and the reverse are close to zero. This is
indicative of the lack of coherence between the part of the
state that passes through the oscillating glass and the part

that does not. This shows that we can successfully measure
the Dirac distribution for a transverse quantum state and
that it correctly determines the state of a mixed system.

The compatibility of Bayes’ theorem with the Dirac qua-
siprobability distribution goes beyond the simple example we
gave earlier. The simplicity of Dirac distribution allows us to
generalize its theoretical definition to multiple variables, e.g.,
B(x.q.K.p) = (5(P— p)5(K'— K)5(Q' — ¢')5(X — x)) =
Tr[r,mp 7t 7, p], where Q' and K’ are another two continuous
variables (e.g., the photon position and momentum at a later
time after undergoing some evolution). Hoffman showed
that with the above theoretical definition of P(x, ¢', k', p)
one can propagate the Dirac distribution ﬂ5(x, k) in time by
applying Bayes’ theorem [26]:

P(q.K) =) P(¢.Klx.p)-Plx.p),  (3)
xp

where  P(q, K'|x, p) = P(x,q, K, p)/P(x, p) = (p|k')x
(K'lq"Y{q'|x)/{p|x) is independent of the quantum state.
This four-dimensional generally complex conditional qua-
siprobability is a propagator of an arbitrary point in x, p
phase space to any point in ¢’, k¥’ phase space. In the context
of quantum information, it functions like a superoperator
(i.e., it transforms between density operators) and can
encompass both the unitary and nonunitary evolution of
any quantum process (see Ref. [30] for further development
of this concept). Note that this is very different from using
Bayes’ theorem to update a prior quantum state based on
the incomplete information about the system provided by
classical positive-valued statistics, e.g., POVMs (as studied
in Ref. [31]). In particular, here, as with classical proba-
bility distributions, one can directly apply Bayes’ theorem
to update the Dirac quasiprobability distribution and evolve
it as a function of space or time.

We now describe a demonstration of this Bayesian
propagation. For the sake of experimental simplicity, we

FIG. 4 (color online). Evolution of the
quantum state by Bayes’ theorem. (a) A
series of directly measured Dirac distri-

s butions propagated from the mixed state
06 in Fig. 2(b) to a plane translated by Az =
04 (1) 8.4 cm, (i) 16 cm, and (iii) 32.5 cm

past the Fourier transform plane (by
moving the camera). (b) The theoretical
prediction for the propagated distribu-
tions found using Bayes’ theorem, as in
Eq. (3). In all (a) and (b) and (i)— (iii), the
bottom plot is Dirac distribution’s phase
and both the inset and top plot are its
magnitude. As in Fig. 2, the transverse
x axis is the position of the weak meas-
urement, whereas transverse k' now cor-
responds to the transverse position on the
camera (which is no longer proportional
to momentum).

.00
magnitude
(mm?2)

bbb oRr MW
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only update one of the variables in the Dirac distribution
P(x, p) to arrive at P(x, k') = (ni,n?)p. By moving the
camera back from the reimaged Fourier transform plane
so that the photons travel a further distance Az before
being detected, we change our strong measurement of P
to one of K’, which is a combination of X and P [32]
(see Supplemental Material [23]). Then we make a joint
weak-strong measurement of X and K’ in exactly the same
manner as we did for the Dirac distribution to experimen-
tally measure P(x, k"). We repeat the experiment [Fig. 4(a)]
and theoretical [Fig. 4(b)] Bayes’ propagation (see the
Supplemental Material [23]) for three values of Az and plot
the results in Figs. 4(i)—4(iii).

As Az is inqreased, the distributions in Fig. 4 exhibit a
broadening of P(x, k') in the K’ direction. This is due to the
broad width of the photon state in X and the fact that the X
portion of the hybrid X, P variable K’ increases as Az
is increased. Also apparent is a growing k' displacement
of the x > 25 mm portion of the state as Az is increased.
This is consistent with a wedge in our oscillating glass plate
of 0.4 arcseconds. Evidently, each of the three pairs of
experimental and theoretical distributions agrees well in a
qualitative manner, which confirms the applicability of
classical-like Bayesian propagation.

In conclusion, by experimentally measuring the Dirac
quasiprobability distribution we have completely deter-
mined a mixed quantum state. We have also demonstrated
that the Dirac distributions measured at different spatial
planes are related by Bayes’ law, which therefore acts as a
propagator of the quasiprobability. Quasiprobability dis-
tributions such as the Q, P, or Wigner function reflect the
arbitrary choice of the operator ordering (normal, anti-
normal, or symmetric) that embodies the inherent incom-
patibility of quantum and classical physics. Missing
from this list has been the standard ordering, the Dirac
quasiprobability distribution, which has three outstanding
features: (1) Its measurement is simple and similar to the
classical equivalent. (2) It is compatible with Bayes’
theorem, with which we can propagate it to other points
in space or time. (3) In the limit of a pure quantum state, it
reduces to quantum wave function itself.
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