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We investigate theoretically the suppression of two-body losses when the on-site loss rate is larger than
all other energy scales in a lattice. This work quantitatively explains the recently observed suppression of
chemical reactions between two rotational states of fermionic KRb molecules confined in one-dimensional
tubes with a weak lattice along the tubes [Yan et al., Nature (London) 501, 521 (2013)]. New loss rate
measurements performed for different lattice parameters but under controlled initial conditions allow us to
show that the loss suppression is a consequence of the combined effects of lattice confinement and the
continuous quantum Zeno effect. A key finding, relevant for generic strongly reactive systems, is that while
a single-band theory can qualitatively describe the data, a quantitative analysis must include multiband
effects. Accounting for these effects reduces the inferred molecule filling fraction by a factor of 5. A rate
equation can describe much of the data, but to properly reproduce the loss dynamics with a fixed filling
fraction for all lattice parameters we develop a mean-field model and benchmark it with numerically exact
time-dependent density matrix renormalization group calculations.
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Ultracold molecules have tremendous applications rang-
ing from quantum many-body physics [1–3] and quantum
information processing [4] to precision measurements [5]
and ultracold chemistry [6]. However, fast inelastic two-
body losses—as occur for KRb with exothermic chemical
reactions—can limit molecule lifetimes [7–9], and have
been considered a fundamental limitation. Recent experi-
ments with KRb molecules [10] have reported an inhibition
of losses when the molecules are confined in an array of
one-dimensional tubes with a superimposed axial optical
lattice along the tubes (Fig. 1). Similar loss suppression by
strong dissipation was previously observed in bosonic
Feshbach molecules [11]. Extending the molecules’ life-
time over time scales much longer than those determined
by tunneling opens a path for the exploration of itinerant
magnetism and other many-body phenomena arising from
the interplay between dipolar interactions and motion, even
in these highly reactive systems.
FreeKRbmoleculesreactrapidly. Inalattice, thetwo-body

inelastic collision rates are larger than all other lattice energy
scales, including the band separation energy. Consequently,
this system is an example of a strongly correlated system that
defies simple treatment in terms of single-particle physics.
As such, description of the loss suppression based on the
assumption that inelastic interactionsdonot affect the single-
particle wave functions is incorrect [12]. Evidence of this
issue was reported in Ref. [10] where a heuristic “single-
band” treatment of the losses was found to significantly
overestimate the molecule filling fraction f.
In this Letter, we develop a theoretical description of

the dissipative dynamics that nonperturbatively includes

three-dimensional multiband effects. Our analysis allows us
to attribute the observed loss suppression to the continuous
quantum Zeno effect [13–17]—a suppression of coherent
transitions due to strong dissipation—and to generalize
previous single-band treatments [17,18] to the strongly
dissipative regime. We perform systematic measurements
of the KRb lifetime under controlled and reproducible
lattice conditions that allow us to validate the calculations.
The observed dependence of the loss rate on lattice
parameters is consistent with Ref. [10] and is fully
reproduced by the multiband theory. Moreover, the inclu-
sion of multiple bands reduces the determined filling f by a
factor of ∼5, giving results consistent with the filling

FIG. 1 (color online). (a) A 50∶50 mixture of fermionic KRb
molecules in two rotational states, j0; 0i and j1;−1i (indicated by
different colors and shapes), is prepared in a deep 3D lattice, which
is suddenly made shallow along one dimension (y). Along y,
molecules tunnelwith a rateJ=ℏandhavea largeon-site loss rateΓ0

because of chemical reactions. (b) In the Zeno regime, ℏΓ0 ≫ J,
doubly occupied sites are only virtually populated, and the loss
occurs at a significantly slower rate Γeff ≪ Γ0 for molecules on
adjacent sites. For KRb, a multiband analysis of this process is
required for all experimental lattice parameters.
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predicted by Ramsey spectroscopy measurements of mol-
ecules pinned in a 3D lattice and prepared under similar
initial conditions [10,19].
The multiband calculations are first applied to derive a

simple rate equation (RE) for two-body losses, which
assumes instantaneous redistribution of molecules between
collision events. We show that the RE can describe the
measureddissipativedynamics fairlywell over a broad range
of lattice parameters, but fails for the deepest lattice configu-
rations. We develop a simple and unified theory capable of
describing the loss dynamics in all parameter regimes based
on a mean-field (MF) approximation of the many-body
master equation.Wevalidate theMFformulationby compar-
ing it to a numerically exact time-dependent density matrix
renormalizationgroupmethod(t-DMRG)[20–22],whichwe
combine with a quantum trajectory technique [23–25]. The
MF, t-DMRG, and experimentally observed loss dynamics
quantitatively agree.
Experiment.— The experiment begins by loading ∼104

fermionic KRb rovibrational ground-state molecules,
jN ¼ 0; mN ¼ 0i, into the lowest band of a deep 3D cubic
optical lattice with lattice constant a ¼ 532 nm. Here, N is
the principal rotational quantum number and mN is the
projection onto the quantization axis, which in our case is
determined by an external magnetic field angled 45°
between the x and y lattice directions. We next apply a
π=2 microwave pulse to rotationally excite half of the
molecules to jN ¼ 1; mN ¼ −1i. We consider j0; 0i and
j1;−1i as j↓i and j↑i components of a pseudo-spin 1=2
system. We choose the lattice polarizations so that the
tensor ac polarizabilities of j0; 0i and j1;−1i are similar
[26]. However, a residual differential ac Stark shift intro-
duces single-particle dephasing that results in a spin-
coherence time for the entire sample of ∼1 ms. This
dephasing allows us to prepare an incoherent 50∶50 spin
mixture of j↓i and j↑i by holding the molecules in the deep

lattice for 50 ms. Losses are then initiated by quickly
ramping down the lattice depth in the y direction (within
1 ms) to allow tunneling. We measure the number of
remaining molecules j↓i, i.e., N↓ðtÞ, as a function of the
subsequent holding time in the lattice.
We experimentally determine the initial loss rate κ by

fittingN↓ðtÞ to the solutionof a two-body lossREof the form
dN↓

dt
¼ − κ

N↓ð0Þ
½N↓ðtÞ�2; (1)

with N↓ð0Þ the initial number of j↓i molecules. A typical
experimental fit is shown in Fig. 2(a). To avoid the saturation
of the losses that originates from the finite number of
molecules per tube (∼6 per tube on average), which cannot
be captured by theRE,we fit only up to timeswhen∼25% of
the molecules are lost (see Supplemental Material [27]).
The loss rateκ ingeneral dependson the tunneling rateJ=ℏ

and the on-site “bare” loss rate Γ0. If a single-band approxi-
mation is used, the on-site bare loss rate Γ0 is given by [17]

Γ0 ¼ βð3DÞ
Z

jWðxÞj4d3x; (2)

where WðxÞ is the lowest-band single-particle 3D Wannier
orbital. The two-body loss rate coefficient for molecules
in j0; 0i and j1;−1i, βð3DÞ, was measured to be
βð3DÞ ¼ 9.0ð4Þ × 10−10 cm3 s−1 [10].
To experimentally extract the dependence of κ on Γ0 and

the single-particle hopping energy J, we perform similar
measurements to those reported in Ref. [10]. However, here
we ensure reproducibility of the initial conditions to fix f
for all lattice conditions. To measure the Γ0 dependence we
set Vy ¼ 5ER, which fixes J, and then tune Γ0 by
modifying V⊥ [Fig. 2(b)]. Here, ER ¼ ℏ2π2=2ma2 is the
recoil energy and m is the KRb mass. To study the J
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FIG. 2 (color online). (a)Measured number loss of j↓imolecules for an axial (transverse) lattice depth ofVy ¼ 5ER (V⊥ ¼ 25ER) (circles)
andbest fit usinga rate equation (RE),Eq. (1) (blackdashed line). (b)Number loss rate, κ, as a functionofΓ0 (fixingJ ≈ 570 Hzandvarying the
bareon-site rateviaV⊥). (c)Number loss rate,κ, versusJ for fixedΓ0 ≈ 87 kHz (varyingVy andadjustingV⊥ accordingly).Vy (V⊥)wasvaried
from 5 to 16ER (20 to 40ER). Black circles are experimental measurements (error bars represent one standard error). Green short-dashed lines
showsolutionsof theREEq.(3)usinganeffective loss rateΓeff (single-bandapproximation).Theblue long-dashed line shows themultibandRE
using ~Γeff inEq. (3).Themultibandandsingle-bandREresultswereobtainedbyfixing the fillingfraction tobe6%,and25%respectively.Panels
(b)and(c)directlymanifest the continuousquantumZenoeffect: in (b) themeasured loss rate κ decreaseswith increasingon-siteΓ0; in (c) a fit to
the experimental data supports κ ∝ J2, with a χ2 (sum of the squared fitting errors) several times smaller than for a linear fit.
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dependence, we vary Vy while simultaneously adjusting
V⊥ to keep Γ0 fixed [Fig. 2(c)]. The loss rate κ is found to
depend quadratically on J for fixed Γ0 and to decrease with
increasing Γ0 for fixed J. This scaling is consistent with the
continuous quantum Zeno effect, as we now explain.
Single-band rate equation.—A simple way to understand

the loss suppression is to consider two opposite spin
particles in a double well, j↑;↓i. The left and right sides
in this notation represent left and right wells [Fig. 1(b)].
When two molecules occupy the same site the singlet
component decays with rate Γ0, while the decay of the
triplet component is suppressed by the centrifugal barrier in
odd partial-wave channels [9]. Consequently, the loss rate
is determined by Js ¼

ffiffiffi
2

p
J, which is the tunneling com-

puted after projecting the initial wave function into the
singlet state jsi ¼ ðj↑;↓i − j↓;↑iÞ= ffiffiffi

2
p

.
When ℏΓ0 ≫ Js, second-order perturbation theory can

be applied and gives a net j↓i loss rate of 4Γeff with
Γeff ¼ ð2ðJ=ℏÞ2Þ=Γ0. This loss rate can be connected
to number loss dynamics with a RE, ðdnj↓=dtÞ ¼−4qΓeffnjþ1↑nj↓, where nj↓ is the number of j↓imolecules
at site j and q is the number of nearest neighbor lattice sites
(q ¼ 2 for tunneling along the tube direction) [18].
Assuming a uniform distribution, the 50∶50 mixture
implies njþ1↑ ¼ nj↓ ¼ n↓ and

dn↓
dt

¼−8Γeff ½n↓ðtÞ�2 or
dN↓

dt
¼− κSB

N↓ð0Þ
½N↓ðtÞ�2; (3)

where κSB ¼ 8Γeffn↓ð0Þ. All parameters are known except
the filling fraction f ¼ 2n↓ð0Þ. The RE assumes that the
loss rate depends only on the average density. This
assumption is valid when the redistribution of density after
a loss process occurs faster than the typical time between
losses (J ≫ Γeff ) [28].
This simplified single-bandmodel qualitatively reproduces

the measured dependence of κ on lattice parameters [green-
short-dashedlineinFigs.2(b)–(c)].However, sinceΓ0 is larger
than the band gap (e.g., 4 times larger for a Vy ¼ 5ER and
V⊥ ¼ 40ER lattice), this single-band theory is known to be
inadequate. Moreover, in order to fit the experiment, the
single-band theory requires f ≈ 25%, which is known to be
inconsistent with estimates of the filling f ≲ 10% from
Ramsey spectroscopy procedures [19,29]. Resolution of this
discrepancy requires includingmultiple single-particle bands,
which are admixed by strong two-body losses.
Multiband rate equation.— As shown in the

Supplemental Material [27], a single-band model over-
estimates Γ0, predicting it to be larger than the band gap.
Incorporating higher bands decreases Γ0 and, hence,
decreases the f estimated from experiment (since the
effective loss rate is inversely proportional to Γ0). We
extract a renormalized effective loss rate by numerically
computing the loss of two molecules trapped in a double
well along y. We expand the non-Hermitian Hamiltonian

Ĥ ¼ Ĥ0 − iℏβð3DÞδregðrÞ=2, where δregðrÞ ¼ δðrÞð∂=∂rÞr
is a regularized pseudopotential [30] and Ĥ0 the single-
particle Hamiltonian, in the 3D Wannier function basis.
This model accounts for interaction-mediated band exci-
tations in all three dimensions. We initialize the system
with two molecules in the singlet jsi and infer the effective
loss rate by fitting the norm decay to expð−4 ~ΓefftÞ.
Convergence is achieved with 6 bands in each dimension.
Surprisingly, as shown in Figs. 2(b)–(c), both effective loss

rates Γeff and ~Γeff scale similarly with Γ0 and J. This
similarity explains why qualitative experimental signatures
of Zeno suppression expected from a single-band model
survive even though such a model is invalid. However, the
multiband ~Γeff is ∼5 times larger than Γeff . Once these
effective loss rates are calculated, the only free parameter to
fit the experimental measurements is the filling f, which was
fixed to be the same for all data shown in Figs. 2(b)–(c). The
∼5 times faster loss rate from the multiband model leads to a
∼5 times smaller filling fraction of f ¼ 6% [Figs. 2(b)–(c),
blue-long-dashed line] compared to the grossly overestimated
25% extracted using Γeff [Figs. 2(b)–(c) green-short-dashed
lines]. The inadequacy of the single-band model to extract the
correct filling fraction, and the success of the multiband
model, are key results of this work.
Mean-field and DMRG.—The RE, with parameters

extracted from the multiband model, describes the exper-
imental observations fairly well at intermediate V⊥, but
deviates from them for the largest V⊥. We attribute these
deviations to the suppression of tunneling at the cloud’s
edges due to the energy mismatch between adjacent sites in
the harmonic potential generated by the lattice beams. By
inhibiting transport, this effect invalidates the assumption
that molecules are redistributed rapidly between loss
events, and, therefore, the losses are not determined
exclusively by the average density but depend on the
detailed dynamical redistribution of molecules.
Although this redistribution is absent from the RE, it can

be accounted for by solving a master equation with a
density matrix, ρ̂, projected into the states with at most one
molecule per site after adiabatic elimination of doubly
occupied states. We keep terms up to order Γeff [17], and we
simultaneously account for multiband effects by replacing
the single-band Γeff by the renormalized loss rate extracted
from the multiband double well solution, obtaining

d
dt

ρ̂ ¼ − i
ℏ
½Ĥ0; ρ̂� þ Lρ̂: (4)

Here, Ĥ0 ¼ −JPj;σðĉ†jσ ĉjþ1σ þ H:c:Þ þ P
j;σV

σ
j ĉ

†
jσ ĉjσ,

Lρ̂ ¼ ð1=2ÞPj½2Âjρ̂Â
†
j − ρ̂Â†

j Âj − Â†
j Âjρ̂� [31], and Vσ

j ¼
ð1=2Þmω2

σj2a2 is the parabolic trapping potential felt by
molecules in state σ at site j. The average trap frequency
ðω↑ þ ω↓Þ=2 varies between ≈2π × ð15 − 40Þ Hz for
the experimental range of V⊥. The σ dependence is
due to residual differential ac Stark shifts between the two
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rotational states. L is a Lindblad superoperator that
accounts for losses, and the jump operators are

Âj¼
ffiffiffiffiffiffiffiffiffiffi
2 ~Γeff

q
½ðĉj↑ĉjþ1↓þĉj↑ĉj−1↓Þ−ðĉj↓ĉjþ1↑þĉj↓ĉj−1↑Þ�:

We have checked the validity of the renormalized single-
band model by confirming that it reproduces the dynamics
of the multiband problem for the case of two molecules in
four wells.
To solve Eq. (4) we map the hardcore fermions onto

hardcore spin-1/2 bosons [32], and then use a mean-field
ansatz ρ̂ ¼ Q

j ~ρj with ~ρj ≡P
α;β¼f↑;↓;0gρ

α;β
j jαihβj. Here, ~ρj

is the reduced projected density matrix at site j, and ↑, ↓, 0
label the three possible local states of spin-up, -down, and the
vacuum, respectively. This ansatz leads to closed equations
ofmotion for ρα;βj (see SupplementalMaterial [27]). Because
of the rapid dephasing of spin coherence resulting from
ω↑ ≠ ω↓, we set ρ

σ;σ0≠σ
j ¼ 0, which simplifies the equations

further. Although the MF treatment predicts no coherent
tunneling for a pure Fock state, we initiate it by assuming
nonzero particle-hole coherence jρσ;0j j ¼ 1=2.
Figure 3(a) shows the dynamics for the largest V⊥, where

the coherent tunneling is strongly suppressed by the large
parabolic potentialω↑=↓. We see that the dynamics is poorly
described by the RE, and the MF solution better describes
the data. Admittedly, the MF assumption is an extreme
approximationprecludingentanglementbetweenpartsof the
system. In order to test its validity, we also solve Eq. (4)
numerically by combining t-DMRG algorithms [20–22]
with a stochastic sampling over quantum trajectories
[23–25,33]. The results, shown in Fig. 3(b), are converged
in the matrix product state dimension χMPS and are therefore
numerically exact. The differential stark shift for the lattice
parameters of Fig. 3 (ω↑=ω↓ ∼ 0.9) gives rise to an effective
spatially dependent magnetic field that disrupts spin

correlations generated during the dynamics. In this case
the data, t-DMRG, and MF (which explicitly ignores spin
correlations) agree up to the times used to extract loss rates
from the data, when the contrast has decayed by ∼20%.
However, in the absence of a differential Stark shift
(ω↓ ¼ ω↑), we note that the density calculated from t-
DMRG saturates at a higher value than predicted by the
MF theory, which we attribute to the growth of spin
correlations in the absence of dephasing [34].
Mean field vs experiment.— With the validity of the MF

established, we use it to model the experiment. In the MF
calculation, we assume that molecules are initially uni-
formly distributed within a shell with inner (outer) radius of
20 (50) lattice sites. The shell distribution is expected
because molecules are created from a Mott insulator of Rb
and a band insulator of K. Assuming only sites with one Rb
and one K can yield molecules during STIRAP [7,29], sites
in the trap center initially doubly occupied by Rb atoms are
lost [7]. We then average over random initial configura-
tions, since the experiments measure an ensemble of 1D
tubes. Figures 4(a)–(b) show the MF results (red line),
where we used f ¼ 9% to match the experiment. This is
slightly larger than that from the multiband RE (dashed
blue line in Fig. 4), f ¼ 6%, since the RE overestimates the
loss rate by assuming instantaneous redistribution of the
molecules.
Since the molecule distribution in the experiment is

known only approximately, we vary the shell width and
find that the estimated MF filling fraction that best fits
the experimental loss has a range f ∼ 9� 2%. The MF
accounts better for the dependence of the loss rate on V⊥.
Remaining deviations betweenMF and experiment are seen
only for the shallowest V⊥, where the transverse tunneling
rate is only 3 times smaller than the axial one, which may
indicate the breakdown of 1D dynamics.
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[same data as Fig. 2(b)]. (b) Number loss rate, κ, vs J for fixed Γ0

[same data as Fig. 2(c)]. Black circles are experimental measure-
ments. Blue long-dashed and solid red lines show RE and MF
solutions, respectively, using ~Γeff (multiband model). The shaded
area accounts for�2%variations around theMFestimate off ∼ 9%
arising from the uncertainty in the initial molecule distribution.

PRL 112, 070404 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

070404-4



Conclusions.—Theunderstandingof theunderlyingphysi-
cal mechanism responsible for the loss suppression in KRb
opens the path for laboratory explorations of iconicmodels of
quantummagnetism combiningmotional and spin degrees of
freedom, previously believed to be inaccessible due to losses.
These include the extended t-J model, predicted to exhibit
itinerant ferromagnetism, d-wave superfluidity [35,36], and
topological phases [3,37]. Our findings also extend to other
dissipative systems, such as alkaline earth atoms [38–41] and
other chemically reactive molecular species [42].
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