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The proximity of the Fermi surface to van Hove singularities drastically enhances interaction effects
and leads to essentially new physics. In this work we address the formation of flat bands (“Fermi
condensation”) within the Hubbard model on the triangular lattice and provide a detailed analysis from
an analytical and numerical perspective. To describe the effect we consider both weak-coupling and
strong-coupling approaches, namely the renormalization group and dual fermion methods. It is shown that
the band flattening is driven by correlations and is well pronounced even at sufficiently high temperatures,
of the order of 0.1-0.2 of the hopping parameter. The effect can therefore be probed in experiments with

ultracold fermions in optical lattices.
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Introduction.—The study of two-dimensional lattice
models can potentially unveil the nature of exotic materials
like unconventional superconductors and quantum spin
liquids. After their almost simultaneous discovery, high-
temperature superconductivity in cuprates [1-3] and the
fractional quantum Hall effect [4,5] posed some awkward
questions to Landau Fermi liquid theory. For both systems,
the Coulomb interaction is sufficiently strong to cause the
breakdown of perturbative expansions. In such cases, the
concept of quasiparticles providing a basis for understand-
ing most of the condensed-matter phenomena is question-
able, and new physics can arise. In cuprates, the large onsite
Coulomb repulsion eliminates the double occupancy and
changes the statistics of charge carriers, while in the
quantum Hall phase it leads to the formation of composite
fermions. Both scenarios manifest deviations from Landau
Fermi liquid behavior.

It is well known that many body effects are drastically
enhanced in the vicinity of anomalies in the single-particle
spectrum [6—9]. Soon after high-temperature superconduc-
tivity was detected in cuprates, it was pointed out that for
the optimal doping the Fermi level lies in the vicinity of
van Hove singularities (VHSs) with divergent density of
states (DOS), and that in this case the Fermi liquid picture
can be violated even for a weak interaction, due to singu-
larities of the electron-electron vertex [7]. The concept of the
so-called van Hove scenario has been pushed forward to
explain a variety of phases associated with the presence
of VHSs, e.g., superconductivity, itinerant ferromagnetism,
and density waves. If the VHS is near the Fermi level, both
antiferromagnetism and d-wave superconductivity can be
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produced even at small on-site Coulomb repulsion, as can be
shown from a renormalization group (RG) analysis [10-15]
or the parquet approximation [14,16]. The nature of exotic
ground states is determined by the delicate interplay of these
fluctuations, which therefore remain controversial.

Ultracold Fermi gases in optical lattices [17,18] open
up completely new opportunities to study exotic states of
interacting fermions. Today, the experimental realization of
quantum many-body Hamiltonians, such as the Hubbard
model, is a reality and a variety of system parameters such
as the hopping, lattice type, and Hubbard repulsion can
be tuned [17]. However, despite substantial progress in
cooling, the achieved temperatures are still relatively high
compared to the effective hopping parameter, so critical
temperatures of the low-temperature phases cannot be
reached. It is therefore important to identify effects that
can be probed at these temperatures.

In this Letter, we show that a precursor of a strongly
correlated low-temperature instability, possibly chiral
superconductivity [19], exists at sufficiently high temper-
atures and that it can be probed in the paramagnetic phase
of fermionic cold atoms on a triangular lattice. The effect
can be understood in terms of Fermi condensation.

To clarify this statement, recall that in conventional
Landau Fermi liquid theory [20], the free energy is a
functional of the quasiparticle distribution function ny.
The particle distribution minimizes this functional, i.e.,
SF [ny]/ény = 0, which leads to

ex(T) = u(T) + Tlog [(1 — ny)/ny], (D
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where ¢y is the dispersion, y the chemical potential, and T
denotes temperature. This expression reproduces the
celebrated Fermi distribution n, = 1/(1 4 e(&=#)/T), On
the other hand, & (T') is a functional of ny. As long as the
group velocity is positive, all variations 6FE of this func-
tional are positive and the Fermi distribution corresponds to
the minimum. If the group velocity of the quasiparticles
becomes negative, there exist variations for which 6F < 0.
This leads to a restructuring of the distribution function
in a certain interval of momenta k; < k < kf, where the
resulting ny differs from the Fermi distribution, but still
minimizes the functional. In the limit 7 — 0, ¢, = p and
hence the dispersion becomes entirely flat in this interval.
In analogy to the Bose-Einstein condensate, this highly
degenerate state has been termed Fermi condensation.

The idea was suggested [21,22] in a purely phenomeno-
logical background and remains controversial [23]. If it
exists, a Fermi condensate is a new state of matter which is
topologically different from both the Fermi liquid and the
Luttinger liquid [24]. In the context of the van Hove scenario
in high-temperature superconductivity, the Fermi conden-
sation was considered in Ref. [25] as a way to demonstrate
that the van Hove scenario is not just a scenario at van Hove
filling and hence for a single point (an objection from
Ref. [1]); because of the formation of flat bands, there is a
pinning of the Fermi energy to the VHS point for a whole
range of electron concentrations. Otherwise, below a critical
temperature, the highly degenerate state may give way to
another fermionic instability associated with a non-Fermi
liquid ground state. It is therefore important to observe this
precursor effect experimentally.

We address this effect for the Hubbard model at triangular
lattice from both weak-coupling and strong-coupling limits,
by means of RG and dual-fermion [26] approaches, respec-
tively. Our analysis shows that the phenomenon is robust and
can be observed in experiments with ultracold Fermi gases at
sufficiently high temperatures.

Model.—We focus on a Hubbard model on the triangular
lattice,

H = Zekdladkﬂ + Uznmnii, (2)
ko i

with local Coulomb repulsion U > 0 and dispersion relation
e = —2tcos(kya) + 2 cos(kya/2) cos(kyav/3/2)] — u,
where ¢ > 0 is the hopping amplitude, x the chemical
potential, and a is the lattice spacing. We take a =1 in
the following. The reciprocal lattice is spanned by the
vectors G, = 27(e,\/3 — ey)/\/§ and G, = 4ney/\/§,
while the first Brillouin zone is hexagon shaped. At 3/4
filling, logarithmic VHSs (kinks in the DOS) appear
in three inequivalent saddle points M, = (0,2z//3),
M, 5 = (=, £1/+/3), and the hexagon-shaped Fermi surface
becomes highly nested (Fig. 1). It is well known that in the
weak coupling limit U/t < 1, the dominant instability for a
non-nested Fermi surface away from VHSs is related to
superconductivity. Contrary to this, at VHSs (Vi g, = 0) the
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FIG. 1 (color online). Hexagon-shaped Brillouin zone and
DOS of the system doped to the VHS. From momenta and spin
conservation the following two-particle processes are allowed:

exchange scattering (g,), forward scattering (g,), umklapp
scattering (gs3), and intrapatch scattering (g,).

Fermi surface has flat sides and is nested as a result. The
vector Q. connecting different points M, and My is such
that 2Q,s = 0 modulo a reciprocal lattice vector. In what
follows we will focus on the model doped exactly to the VHS
(u = 2t) and perfect nesting.

Weak-coupling analysis.—We start our analysis of the
RG flow by developing a three-patch renormalization
group analogous to Refs. [25,27]. The number of patches
for the triangular lattice agrees with the number of
inequivalent saddle points, in which the DOS diverges
logarithmically: N = Nylog [A/ max (22, T)] (here A is a
high-energy cutoff). The problem in question can be
reduced to a quasi-one-dimensional one if we introduce
those two-particle scattering processes between different
patches, which are allowed by momentum conservation.
One-dimensional systems are known to be unstable to the
formation of pair instabilities in both Cooper (particle-
particle) and Peierls (particle-hole) channels, and result in
logarithmic singularities for pair susceptibilities. Extending
the quasi-one-dimensional analysis we define four different
interactions associated with two-particle scattering between
different patches: exchange (or backward) scattering (g, ),
forward scattering (g,), umklapp scattering (g3), which
conserves momentum modulo a reciprocal lattice vector,
and intrapatch scattering (g4). All four interactions are
marginal at tree level, but acquire logarithmic corrections
from the integration near the VHS, thus justifying the use of
logarithmic RG. These logarithmic corrections come from
energy scales E < A =& t, the energy scale at which higher-
order corrections to the dispersion become important.

The susceptibilities in the particle-particle y,,(q =
0) = Nylog [A/ max (2¢,T)]log(A/T)/2 and particle-
hole y,,(q = Q,4) = Nolog?[A/ max (2¢,T)]/2 channels,
evaluated at momentum transfers zero and Q,; between
points M, and M, are log-square divergent. One loga-
rithm stems from the DOS, whereas the second is inherent
to the divergence in the Cooper channel for y,, and
appears in y,,(Q) due to perfect nesting of the Fermi
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FIG. 2 (color online). Main panel: Renormalization group flow
of the couplings g;. Inset: Dispersion relation in the vicinity of the
saddle point corresponding to the bare (red or dark gray) and
renormalized (blue or light gray) action. The flattening of the
band is clearly visible. The plotting region is determined by the
cutoff parameter A/7 ~ 1.

surface. For the analysis of the low-energy properties we
neglect the logarithmically divergent contributions y,,(0)
and y,,(Q), which are parametrically smaller. Restricting
the integration region to the patches and placing external
momenta at the critical points, we derive one-loop RG
equations using momentum-shell integration [28] with
respect to the flow parameter 1 =y,,(q = 0,E). It is
noteworthy that to leading order the solution to a set of RG
equations is defined by the relative weight between the
Peierls and Cooper channels only. Because of nesting the
flow of the coupling constants is strongly modified and
the effect of interactions is dramatically enhanced. An
inspection of RG flow in Fig. 2 reveals that the couplings
diverge when approaching instability region 4. with
lgs] > g3 > 9> > ¢y; i.e., intrapatch scattering prevails.
The combination of a divergent DOS and perfect nesting
leads to a RG flow to strong coupling, in agreement with
an earlier fRG study [19]. Thus, the local repulsive
coupling can favor the formation of instabilities towards
magnetic or superconducting states at relatively high
temperatures 4, = y,,(E = T.), e.g., for the initial values
of running couplings gy,

To~texp(=1/+/goNo) 3)

even if the interaction strength is weak compared to the
fermionic bandwidth W.

In order to obtain the renormalized band function we
proceed by estimating the second-order correction to the
self-energy X, (k) for k near M;. Similar to [25,29] we
make a distinction among three contributions stemming
from intermediate integration with quasimomentum corre-
sponding to the same point and the two other VHSs:
Z,(k) = >_1,3%,(k) [28]. The band function is deter-
mined by the pole of the cutoff-independent Green’s

function that can be obtained by solving the corresponding
Dyson equation, whereas the effects of spectrum renorm-
alization, which describe the flattening, can be absorbed into
mass renormalization factors. The remaining divergencies
are to be associated with the quasiparticle residue. The
resulting quasiparticle spectrumin the vicinity of the M point
(withinitial g; = ¢, = g3 = g4 = 0.15)is shown in the inset
of Fig. 2: The spectrum is almost flat in a rather wide range
of k resulting from mass renormalization. The quasiparticle
weight is also renormalized under the RG flow (not shown).
We find that the pinning of the Fermi level to the VHS
remains robust under the RG flow. Thus, we conclude that
the effects of renormalization drastically affect the Fermi
surface topology, leading to the formation of an extended
VHS (EVHS).

Strong-coupling analysis.—In order to demonstrate the
robustness and experimental accessibility of the phenome-
non, it is necessary to show that the effect persists at finite
temperatures and strong interaction. This is a challenging
task: While dynamical mean-field theory (DMFT) captures
nonperturbative phenomena such as the Mott transition,
it neglects spatial correlations. Because of the important
role of susceptibilities, the problem cannot be treated in
DMFT. Cluster extensions of DMFT [30] lack sufficient
momentum resolution. Both criteria are met only in novel
approaches combining DMFT with analytical methods
[26,31]. Here we employ the dual fermion technique [26]
(see [32] for a comprehensive overview).

In this approach, the electronic self-energy is decomposed
into a local part obtained from DMFT and a nonlocal
momentum  dependent  correction X, (k) = IDMFT 1
ENL(K), which is evaluated in dual perturbation theory. The
antiferromagnetic pseudogap, Fermi-arc formation, and
non-Fermi-liquid effects due to the VHS are already captured
by the lowest-order diagrams [33]. Here we employ the ladder
approximation, which describes the feedback of collective
excitations on the electronic self-energy. Introducing the dual
particle-hole bubble 7% (q) = -7 G, (k)G, ., (k +q),
the dual self-energy reads

5 (K) =57 G (k- 2 @[ ()5 (7))

qo'v
(C))

Here y¥ , is the fully connected dynamical vertex of the
impurity model [32], @, v denote fermionic and bosonic
Matsubara frequencies, respectively, and 7" denotes temper-
ature. The vertices are tensors in spin space and spin summa-
tions have been omitted for clarity. The second term in
brackets prevents double counting of diagrams. From the
Bethe_salpeter equaﬁon [F; ! (q) }(um’ = [7/17 l]a)m' _)? Z}(q)éma)’
weobtain the vertex functionI'. The bare dual Green’s function
is GO (k) = GPMFT(k) — g,,, where g, is the exact local
DMFT Green’s function. This approximation is applicable
for strong coupling [34]. The relation between the ~ and the
lattice Green’s function can be written in the form [32,33]
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FIG. 3 (color online). Spectral function in dual fermion
approach at U/t = 8 and T/t = 0.05. Local maxima correspond-
ing to the lower band are indicated by a white line. In the vicinity
of the Fermi level, this lower band perfectly matches the
prediction &, — u = TIn[(1 — ny)/ny] following from the Fermi
condensate hypothesis (thick black line). The bare dispersion is
shown for comparison (blue, dashed).

Go(k) = [(90 + 9020 (K)g,) ™ + 8, —a] ™. )
with the DMFT hybridization function A,,,.

The resulting spectral function —(1/7)ImG, (k) for
U/t = 8 is shown in Fig. 3. We observe a broadening and
flattening of the spectrum at the M point. While flattening
of the spectrum is partly present in DMFT due to band
renormalization, including spatial correlations leads to the
formation of an EVHS. Apart from the incoherent high-
energy excitations we observe a well-defined and only
slightly dispersive band at low energies, which spans a
large region of the Brillouin zone between the M and K
points. We have marked the local maxima with a white line.
We find that this band agrees perfectly well with the
prediction &, —u = T'In[(1 — ny)/ny| from Eq. (1) (black
line) everywhere in the vicinity of the Fermi level. While
the results are described by the Landau functional, the
self-energy clearly exhibits a power law and hence non-
Fermi liquid behavior. For T — 0 this leads to a flat band
and Fermi condensation, or the system becomes unstable
due to the degeneracy. We therefore interpret the effect
as a precursor to a correlated magnetic or superconducting
ground state. The formation of this band is correlation
driven, as it disappears when the interaction is lowered.

In order to further elucidate the origin of this effect, we
note that because of the large DOS at the M point due to the
proximity of the VHS, the dominating contribution to
the convolution in the self-energy (4) in the vicinity of the
M point is expected to stem from the vicinity of the I point.
An analysis of the leading eigenvalues of the Bethe-Salpeter
equation reveals that the spin channel dominates in the
vicinity of I' in agreement with our RG analysis, where
intrapatch scattering is found to give the dominant contri-
bution. Hence the effect results from the combination of a
large DOS and coupling to strong ferromagnetic spin
fluctuations. Indeed, our calculations unambiguously deter-
mine this effect to originate from collective excitations in the

— 0.6

0.5

=y
S - ' 0.4

FIG. 4 (color online). Broadened Fermi surface within £0.1
electrons for U/t =8 and T/t =0.1. The lower left sextant
shows the noninteracting result.

spin channel [28]. The observed tendency to ferromagnetic
ordering due to frustration is in line with previous results [35].

The large self-energy in the vicinity of the M point leads
to both a broadening of the spectrum and a strong reduction
of spectral weight at the M point, also in agreement with
the RG. The flattening is considerably stronger in non-self-
consistent calculations, where attenuation of the fluctua-
tions due to damping of quasiparticles at the M point is not
taken into account [28]. The absence of the low-energy
band in second-order approximation to the dual self-energy
underlines the importance of the feedback of collective
excitations onto the electronic degrees of freedom.

In the top panel of Fig. 4 we plot the so-called broadened
Fermi surface within £0.1 electrons from the value 0.5
corresponding to the interacting Fermi surface for given
temperature. This quantity is directly related to the occu-
pation function for different momenta, which is experi-
mentally measurable [17]. The comparison with the
noninteracting case shows that the effect of flattening is
substantial. Increasing the interaction strength U strongly
enhances the flattening while lowering the temperature
mitigates it. The correlation-driven effect can, nevertheless,
clearly be separated from this purely thermal effect even at
the highest temperatures (see Supplemental Material [28]).
We find that the effect persists up to shifts in chemical
potential of at least 0.5¢, showing that it is robust to the
presence of a trapping potential.

Conclusions.—In summary, we have investigated the
formation of extended van Hove singularities in the triangu-
lar lattice. The renormalization group and strong-coupling
numerical analysis establish the phenomenon as driven
by many-body interactions: The interplay of many-particle
scattering and nesting leads to band flattening near van Hove
singularities. The related high intensity in the spectral
function may find interesting applications in tunneling
experiments or spintronics. The phenomenon can be inter-
preted as a precursor to a strongly correlated many-body
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ground state. Its study in the controlled environment of cold
atom experiments may fundamentally improve our under-
standing of correlated systems. We have shown the effect to
be robust when tuning interaction, temperature, and chemi-
cal potential. In particular, its signature in the occupation
function is found to persist to relatively high temperatures,
making the phenomenon detectable in experiments with
ultracold atoms in optical lattices. The flat band could be
observed directly via band spectroscopy [36] or indirectly
via the momentum distribution function accessible in
time-of-flight measurements [17].
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