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The inverse square potential arises in a variety of different quantum phenomena, yet notoriously it must
be handled with care: it suffers from pathologies rooted in the mathematical foundations of quantum
mechanics. We show that its recently studied conformality breaking corresponds to an infinitely smooth
winding-unwinding topological transition for the classical statistical mechanics of a one-dimensional
system: this describes the tangling or untangling of floppy polymers under a biasing torque. When the ratio
between torque and temperature exceeds a critical value the polymer undergoes tangled oscillations, with
an extensive winding number. At lower torque or higher temperature the winding number per unit length is
zero. Approaching criticality, the correlation length of the order parameter—the extensive winding
number—follows a Kosterlitz-Thouless-type law. The model is described by the Wilson line of a (0þ 1)
Uð1Þ gauge theory, and applies to the tangling or untangling of floppy polymers and to the winding or
diffusing kinetics in diffusion-convection reactions.

DOI: 10.1103/PhysRevLett.112.070401 PACS numbers: 03.65.Vf, 11.15.-q, 64.70.Nd, 87.15.Zg

The quantum mechanics of the inverse square potential
(ISP) [1,2] is an old problem that has attracted much recent
attention [3–10]. It is relevant to phenomena as diverse as
the Efimov effect for short range interacting bosons [11,12]
(recently confirmed experimentally [13]), the interaction
between an electron and a polar neutral molecule [14,15],
the near-horizon problem for certain black holes [16,17],
the anti–de Sitter/conformal field theory correspondence
[18], and nanoscale optical devices [19]. In statistical
mechanics, the inverse square potential represents the
borderline case for a phase transition for the long-ranged
1-D Ising model [20–23].
WhilethemathematicsoftheISPiswellunderstood[1,2], its

practical use remains often problematic [3–10]. The quantum
mechanics of its conformally invariant Hamiltonian is well
posed for repulsive or weakly attractive couplings, yet it is not
self-adjoint for strong attractions [24–26], leading to unphys-
ical pathologies typical of singular potentials [27]. Most
relevantly, its bound spectrum is a continuum and unlimited
frombelow [1,2]. The problem is often rendered physical by a
short-distance cutoff, when possible, or by other renormaliza-
tions [3,8]: in all cases conformality is lost either by regulari-
zation or by a renormalization anomaly.
When regularized by a finite cutoff, the potential

produces an infinite but discrete and limited spectrum of
bound states and negative energies, with a defined ground
state. At the crossover between strong and weak attraction
the bound states disappear in the same fashion as the
inverse correlation length in the Kosterlitz-Thouless (KT)
transition [28], a feature of loss of conformality [6]. This is
suggestive of an associated (topological) transition.
Here we show that the problem can indeed be related

to an infinitely smooth topological transition for a

one-dimensional system that is biased to wind around the
pole of a non-simply-connected space. The order parameter,
as we shall see, is then the average winding number, which
approaches zero infinitely smoothly at the transitionwhile its
correlation length follows a KT law. The transition is thus
between the winding and nonwinding functional submani-
folds of the Hamiltonian, which can be made topologically
distinct by boundary conditions. The removal of these
boundary constraints at the transition corresponds to the
extension of the gauge space for a (0þ 1) Uð1Þ symmetry,
whose Wilson line describes our system.
For physical definitiveness, the model can describe a

tangling or untangling phase transition for floppy polymers
[29–31] under torque: current single molecule manipula-
tion techniques [32] could test it experimentally. Not
surprisingly, it is also associated with a kinetic transition
for a diffusion-convection reaction in a screw dislocation.
Consider first the one-dimensional “Hamiltonian” for the

attractive ISP

Ĥ ¼ − 1

2χ

�
d2

dρ2
þ γ2

ρ2

�
; (1)

which can be made self-adjoint for jγj > 1=2 by a short
distance cutoff ρ ≥ ρ̄ such that Eq. (1) acts on smooth
functions of [ρ̄, ∞) with a Dirichlet (zero) boundary
condition at ρ̄ [3]. We associate to it the partition function
(or density operator)
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such that (with the above regularization for Ĥ) [33]

Zγðρl; ρ0Þ ∝ hρlje−lĤjρ0i: (3)

(Equipartition factors in χ, irrelevant to the transition, are
neglected in the following.) We then introduce

hωi ¼ l−1∂γ ln Zγ ¼ hk−1iγ (4)

as an order parameter. The second equality in Eq. (4)
defines the average winding compliance hk−1i, the recip-
rocal of a generalized rigidity. Equation (4) can be rewritten
as hk−1i ¼ 2l−1∂γ2 ln Z, and then from Eq. (2) we find

hk−1i ¼ h1=χρ2i: (5)

As we will see below, as γ → ð1=2Þþ the order parameter
hωi disappears in the thermodynamic limit (l → ∞) and
thus the generalized rigidity diverges.
The physical meaning of the above treatment becomes

clearer by performing a Hubbard-Stratonovich transforma-
tion on Eq. (2) in the auxiliary variable ω, which yields

Zγðρl; ρ0Þ ∝
Z ρðlÞ¼ρl

ρð0Þ¼ρ0 ;ρ>ρ̄

½ρdωdρ� exp
�
−β

Z
l

0

Hds

�
(6)

for the energy per unit length H, given by

βH ¼ χðρ: 2 þ ρ2ω2Þ=2 − γω: (7)

(Here β ¼ 1=T; the Boltzmann constant is taken to be
kB ¼ 1). Note that, as a consequence of the transformation,
there are no boundary conditions on ω.
The ρ in the functional measure [ρdωdρ] is due to the

inverse Gaussian integration over ω and the functional
measure is thus reminiscent of a surface element in polar
coordinates. Indeed Eqs. (6) and (7) control the statistical
mechanics of a field ψðsÞ ¼ ρðsÞ exp½i R s ωðs0Þds0�, which
describes trajectories in a punctured (because ρ > ρ̄)
complex plane. Then, from Eq. (7), the order parameter
hωi in Eq. (4) is simply the average linear density of the
winding number (up to a factor 2π) of these trajectories
around the pole: the quantum-mechanics of the ISP with an
ultraviolet cutoff is thus turned into the statistical mechan-
ics of a one-dimensional object winding around the pole of
a non-simply-connected plane.
For a system described by this model (see the conclusion

for more realizations) consider a floppy polymer—a
random chain [31,33] of length l—made of N ¼ l=a
monomers of length a, held under tension f and subjected
to a torque Γ by magnetic or optical tweezers [32], as in
Fig. 1. In a continuum limit, ψðsÞ represents the deviation
from the straight filament configuration in the
perpendicular plane and s is the intrinsic coordinate. The
contribution from tension to the energy density per

unit length, neglecting subdominant terms, is
−fdh=ds ¼ fψ

: �ψ
:
=2 ¼ fðρ: 2 þ ρ2ω2Þ=2. Here dh is the

experimentally measured change in distance h between
beads (Fig. 1). The simple connectedness of the space (and
thus of the plane orthogonal to the experimental apparatus)
is removed by considering another polymer, held straight,
around which our polymer can tangle (Fig. 1). Then the
energy contribution to the torque is −Γ R l

0 ωds as
R
l
0 ωds is

the mutual angular deviation between the beads on which
the torque acts. There are boundary conditions ρðlÞ ¼
ρð0Þ ¼ ρ0 > ρ̄ at the extremes, but clearly not on the
angular variable. Such a system is described by the energy
in Eq. (7) if χ ¼ f=T, γ ¼ Γ=T. One might also consider
two identical polymers, described by ϕ1, ϕ2, and then 2ψ ¼
ϕ1 − ϕ2 (the “center of mass” coordinate ϕ1 þ ϕ2 only
contributing equipartition). In both cases ρ̄ is the average of
the two radii. This problem of biased tangling can be
extended beyond the experimental setting, for instance to
the case of a floppy polymer tangling around another
polymer with large persistence length (e.g., ssDNA tan-
gling around helical DNA).
We now analyze the transition, which corresponds to the

disappearance of the extensive winding of the two poly-
mers. In the thermodynamic limit of large l, Eq. (3) projects

FIG. 1 (color online). Left: schematics of a possible exper-
imental setting; a fluctuating polymer, here in a helical configu-
ration, is held at its ends with a tension f between beads at
distance h, subject to a torque Γ, tangling around the straight
polymer at the center, and is described by the two-dimensional
vector ψðsÞ (red arrow) in the plane perpendicular to h, while s is
the intrinsic coordinate. Top right: a random chain with mag-
netized monomers of magnetic moment parallel to the tangent
curling around a current I generating a magnetic field B⃗. Middle
right: the convection-diffusion-reaction (of dopant tracers) takes
place on a Riemann surface (a screw dislocation) while the
angular drift is provided by the applied field F along the z
direction; b is the Burgers vector. Bottom: a floppy polymer
biased to tangle around a polymer of larger persistence length.
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onto the lowest bound state of eigenvalue ϵ0—if there is
one—giving hωi ¼ −T∂γϵ0 ≠ 0. The discrete spectrum of
the operator in Eq. (1) is known to disappear when
jγj < 1=2, pointing to a transition at Tc ¼ 2jΓj. For
T > Tc the contribution from the continuum spectrum in
Eq. (3) is nonextensive in l, and the partition function
effectively reduces to equipartition, or Z ∝ χ−l=a, indepen-
dent of γ, and thus hωi ¼ 0: above the transition the
extensive helical structure is lost [34].
When T → 2Γ−, the 1-D Schrödinger problem of Eq. (1)

on a half line with a cutoff is well studied [3]. Defining
ν2 ¼ γ2 − 1=4, the disappearing lowest bound eigenvalue
can be approximated in the limit ν → 0þ [3] as

ϵ0 ¼ −qe−2π
ν ½1þOðνÞ�; (8)

with q−1 ¼ 3.17ð2…Þρ̄2χ=T. From Eqs. (4) and (8) it
follows that the helical order parameter disappears at the
transition with infinite smoothness (Fig. 2) as

hωi≃ 2 πqγν−3e−2π
ν ½1þOðν2Þ� (9)

and the transition is therefore of infinite order, as expected
given its topological nature. The generalized rigidity γ=hωi
approaches infinity exponentially fast at the transition and,
therefore, from Eq. (5), so does hρ2i.

From the statics of Eq. (7) we can gain some insight into
the transition. The local minima of H (for variations at
fixed boundaries) are uniform trajectories, or ψ

: ðsÞ ¼ 0,
corresponding to a straight polymer parallel to the exper-
imental axis (its statistical mechanics corresponds to planar
oscillations). However, for γ ≠ 0, winding trajectories,
which are not stationary points of the functional (in the
sense that δH=δψ ≠ 0), have lower energy. Among these, if
ρ is constrained, the global minimum is a uniform helix
with

ω ¼ kðρÞ−1γ ¼ γ

χρ2
; (10)

where kðρÞ is the linear density of helical rigidity per unit
length and, therefore, k−1 is the static helical compliance
introduced in Eq. (5). Note that the generalized winding
compliance of Eq. (5) is simply the thermal average of
the static compliance Eq. (10). The energy of the helix is
then

βVðρÞ ¼ − γ2

2χρ2
: (11)

The cutoff provides a lower bound for the energy at ρ ¼ ρ̄
and helicity ω0 ¼ kðρ̄Þ−1γ.
The global minimum of the regularized functional H in

Eq. (7) corresponds to a uniform winding around the pole,
while its excitations are straight polymers. These two
classes of trajectories are topologically distinct in the
non-simply-connected plane and a transition can happen
when their free energies become degenerate. Indeed
entropy reduction is the cost of structure: winding trajec-
tories, although favored by energy, are entropically dis-
advantageous compared to the nonwinding ones: this
competition drives the transition and suggests the heuristic
argument below.
Summing over fluctuations in ρ only, whilemaintaining ω̄

fixed, we obtain the partition function of a helix of uniform
winding angle ω̄, or Zω̄ ¼ eγω̄l

R ½dρ� exp ½− χ
2

R
l
0 ðρ

: 2

þρ2ω̄2Þds�: The latter is a harmonic problem in ρ when
ω̄ ≠ 0, while for ω̄ ¼ 0 it reduces to free oscillations and
thus equipartition Zω̄ ∝ χ−l=a. For large l we can project on
the lowest eigenvalue jω̄j=2. By subtracting the equipartition
free energy density ðln χÞ=2a (obtained for ω̄ ¼ 0) from
the free energy density fω̄ ¼ −Tl−1 ln Zω̄, one arrives at the
(linear density of) free energy difference contributed by the
helicity ω̄:

Δfω̄ ¼ −Γω̄þ Tjω̄j=2: (12)

Equation (12) implies that both energy −Γω̄ and entropy
Δs ¼ −jω̄j=2 are reduced by a winding trajectory. As
expected, their interplay drives the transition: for
jγj < 1=2, helical structures are suppressed, as any helicity
ω̄ ≠ 0 increases the free energy. However, when jγj > 1=2,

FIG. 2 (color online). Left: The transition in the γ ¼ Γ=T vs ω
plot; jΓ=Tj → 1=2 as ω → 0. Right: as Γ=T → 1=2þ the average
helicity hωi (red solid line) tends to zero exponentially fast, while
both the generalized helical rigidity hki≡ 1=hk−1i (dashed black
line) and the correlation length ξ (black solid line) approach
infinity with exponential behavior. Bottom: the free energy
density contributed by a definite helicity ω̄ from the heuristic
argument in Eq. (12); for γ < 1=2 we always have an increase of
free energy, whereas at criticality (γ ¼ 1=2) all ω of the same sign
of γ are admitted; for γ > 1=2 the largest possible winding ω
(defined by cutoff) provides the smallest lowering of the free
energy.
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theentropiccostofwindingcanbeoffsetbyanenergeticgain,
and helical structures of the same orientation of Γ lower the
free energy (Fig. 2) [35]. As with the KT transition, the
heuristic, entropic argument correctly predicts the critical
temperature (Tc ¼ 2jΓj).
Interestingly, the heuristic result in Eq. (12) is exact at

the transition with the substitution ω̄ → hωi. In fact, from
f ¼ Tϵ0, s ¼ −∂Tf, and Eq. (8), we obtain

Δs ¼ − 1

2
hωi½1þ 2ν2 þOðν3Þ�: (13)

Since the heuristic computation is based on a uniform
winding angle, its exactness at the transition suggests that
the order parameter tends to uniformity at criticality. As it
disappears, its fluctuations must then tend to zero, while
their correlation length must approach infinity. The first
statement is proved true by differentiating the expression
for hωi in Eq. (9) with respect to γ. We establish the second
one below.
Correlation lengths can be computed by introducing a

varying external field γðsÞ ¼ γ þ ηðsÞ with γ uniform, as
before. The winding correlation function Gðs1; s2Þ ¼
hωðs1Þωðs2Þi − hωi2 is given by [36]

Gðs1; s2Þ ¼
δ2 ln Z½η�

δηðs1Þδηðs2Þ
����
η¼0

; (14)

where the new partition function Z½η� is still given by
Eq. (3), with the replacement lĤ → lĤ þ γ

R
l
0½ηðsÞ=χρ2�ds.

Standard perturbation calculations in imaginary time s
yield, for large js1 − s2j,

Gðs1; s2Þ ∝ eðϵ0−ϵ1Þjs1−s2j: (15)

From Eqs. (15) and (9) we have for the correlation length

ξ ¼ −ðϵ0 − ϵ1Þ−1 ∼ exp
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1=4
p (16)

[since ϵ1=ϵ0 ∼ expð−4π=νÞ at the transition [3]]. Equation
(16) is the same result of the KT model (but with Γ
replacing T). This can be expected as both transitions are
topological in nature and both coincide with the breaking of
conformality [6]. However, unlike the KT case, an external
field Γ breaks the symmetry of our problem and provides an
order parameter hωi.
Our analysis also provides a clear topological explan-

ation for the well known anomalous symmetry breaking of
the ISP via renormalization [3,5–7]. The transition corre-
sponds to tangled fluctuations contributing to the partition
function below the transition, and untangled above. These
trajectories are topologically distinct in the punctured
space. Taking the cutoff ρ̄ → 0 does not restore simple

connectedness. Indeed the limit can be taken together with
γ → ð1=2Þþ in such a way that hωi in Eq. (9) remains finite,
or that ε0 in Eq. (8), remains finite, which corresponds to
the quantum anomaly of the ISP in Eq. (1).
Finally, we show that the model corresponds to the

theory for the Wilson line of the (nondynamical) Uð1Þ
gauge theory in (0þ 1) dimensions for a field
ϕ ¼ ρ exp iα:

βLϕ;A ¼ χjð∂s − iAÞϕj2=2þ ζA; (17)

which is invariant under ϕ → ϕ exp iΛ, A → Aþ ∂sΛ, if Λ
has periodic boundary conditions, ΛðsÞ ¼ Λð0Þ, and thus
cannot change the total winding number for ϕ. Then our
previous coordinate ψ can be considered as the Wilson line
of the gauge theory (17) in ϕ and A:

ψðsÞ ¼ ϕðsÞe−i
R

s AðtÞdt: (18)

From Eq. (18), our winding parameter ω ¼ ∂sα − A is
the relevant coordinate, mapping a gauge-invariant func-
tional manifold orthogonal to the gauge lines. Conversely,
the new coordinate η ¼ ∂sαþ A describes the gauge
trajectories: indeed η flows with the gauge as 2Λ.
With this in mind Eq. (17) can be rewritten as

βLϕ;A ¼ χðρ: 2 þ ρ2ω2Þ=2 − ζðω − ηÞ=2; (19)

since 2A ¼ η − ω. In the partition function the term ζη=2
factors into the irrelevant integration over the gauge
trajectories (while the Faddeev-Popov determinant is
inconsequential, the theory being Abelian), and we are
effectively left with βLϕ;A ¼ βHψ , our energy for ψ given
by Eq. (7), but with γ ¼ ζ=2.
We see now that the transition in the Uð1Þ gauge theory

corresponds to ζ ¼ 1, for which the expression
expðiζ R s AdtÞ becomes invariant toward a gauge with free
boundaries in the thermodynamic limit. Indeed the allowed
values ΛðsÞ − Λð0Þ ¼ 2πn correspond to the change of
winding number per unit length 2πn=l which approaches
continuum as l → ∞. At the transition the gauge space
extends to transformations that can change the average
winding number of the field: that is natural, as the two
functional spaces (winding and unwinding trajectories) are
only topologically distinct at fixed boundaries, a constraint
removed at the transition.
Before concluding, we propose other realizations.

Considering ψ as a two-dimensional vector x⃗ we write
Eq. (7) as

βH ¼ χjx⃗
:
j2=2 − γx⃗

:
· w⃗ðxÞ; (20)

where w⃗ ¼ ∇⃗θðx⃗Þ ¼ ê3∧x̂=jx⃗j is the field of an elementary
vortex (ê3 is the unit vector perpendicular to the plane, θðx⃗Þ
the angular coordinate of x⃗). If γw⃗ represents a magnetic
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field generated by a current I perpendicular to the plane, the
path integral in Eq. (6) describes the probability distribution
for a magnetized ideal random chain [33] in the magnetic
field, where each monomer has a magnetic moment m⃗ ∝ dx⃗
and γ ¼ μ0jmjI=2πT (χ ¼ 2=a).
Finally, if l → t, χ ¼ 1=2D, where D is the diffusivity,

and if fðx⃗0; t0Þ → ðx⃗; tÞg are chosen as boundary condi-
tions for the trajectories in the path integral then, from
Eqs. (6) and (20) , Pðx⃗; t; x⃗0; t0Þ ∝ Z describes the solution
of the following convection-diffusion-reaction equation

D−1P
: ¼ ∇⃗ · ð∇⃗P − γw⃗PÞ þ Pγ2w2=4 (21)

on a helical Riemann surface under drift Dγw⃗. The
Riemann surface can be a screw dislocation in a material
where only in-plane diffusion is allowed [37]. Then drift
can come from a field Fê3 parallel to the Burgers vector
b⃗ ¼ ê3b (Fig. 1), since z=b ¼ θ=2π. Then γ ¼ 2μFb=D,
where μ is the mobility (2μFb is the vorticity of the drift):
the transition corresponds to a competition between dif-
fusivity and drift. A nonzero order parameter in Eq. (4)
implies a uniform (in time) climbing of the dislocation,
or z ∼ hθ=2π ∼ hhωit=2π.
In conclusion we have reported a topological winding or

unwinding transition connected with the quantum loss of
conformality of the attractive ISP. The quantum anomaly of
the potential at strong couplings is related to the non—
simple connectedness of the manifold that allows for
topological distinction. Below the transition winding topol-
ogies are energetically favored, although entropically
unfavored, and vice versa above the transition. We have
proposed possible physical applications including polymer
physics and diffusion-convection reactions. In particular, an
experiment in single molecule manipulation of an appro-
priate floppy polymer (Fig. 1) could reveal the transition: at
room temperature the critical torque is ∼2pN × nm.

C. N. is grateful to P. Lammert for discussions. This
work was carried out under the auspices of the National
Nuclear Security Administration of the U.S. Department of
Energy at Los Alamos National Laboratory under Contract
No. DEAC52-06NA25396.

*cristiano.nisoli@gmail.com
[1] P. M. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw-Hill, New York, 1953).
[2] K. M. Case, Phys. Rev. 80, 797 (1950).
[3] K. S. Gupta and S. G. Rajeev, Phys. Rev. D 48, 5940 (1993).
[4] E. Marinari and G. Parisi, Europhys. Lett. 15, 721 (1991).
[5] S. Moroz and R. Schmidt, Ann. Phys. (Amsterdam) 325,

491 (2010).
[6] D. B. Kaplan, J-W Lee, D. T. Son, and M. A. Stephanov,

Phys. Rev. D 80, 125005 (2009).
[7] A. M. Essin and D. J. Griffiths, Am. J. Phys. 74, 109 (2006).

[8] H. E. Camblong, L. N. Epele, H. Fanchiotti, and
C. A. García Canal, Phys. Rev. Lett. 85, 1590 (2000).

[9] Y. Nishida and D. T. Son, Phys. Rev. D 76, 086004 (2007).
[10] R. P. Martńez-y-Romero, H. N. Nùnez-Yépez, and

A. L. Salas-Brito, J. Math. Phys. (N.Y.) 54, 053509
(2013).

[11] V. Efimov, Phys. Lett. 33B, 563 (1970).
[12] V. Efimov, Nucl. Phys. A210, 157 (1973).
[13] T. Kraemer et al., Nature (London) 440, 315 (2006).
[14] J.-M. Levy-Leblond, Phys. Rev. 153, 1 (1967).
[15] H. E. Camblong, L. N. Epele, H. Fanchiotti, and

C. A. Garcia Canal, Phys. Rev. Lett. 87, 220402 (2001).
[16] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. K. Townsend,

and A. Van Proeyen Phys. Rev. Lett. 81, 4553
(1998).

[17] H. E. Camblong and C. R. Ordonez Phys. Rev. D 68,
125013 (2003).

[18] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[19] J. Denschlag and J. Schmiedmayer, Europhys. Lett. 38, 405

(1997).
[20] D. J. Thouless, Phys. Rev. 187, 732 (1969).
[21] F. J. Dyson, Commun. Math. Phys. 21, 269 (1971).
[22] E. Luijten and H.W. J. Blöte, Phys. Rev. B 56, 8945 (1997).
[23] 40 Years of Berezinskii-Kosterlitz-Thouless Theory, edited

by J. V. Jos (World Scientific, Singapore, 2012).
[24] B. Simon, Arch. Ration. Mech. Anal. 52, 44 (1973).
[25] C. G. Simander, Math. Z. 138, 53 (1974).
[26] H. Narnhofer, Acta Phys. Austriaca 40, 306 (1974).
[27] W. Frank, D. J. Land, and R. M. Spector, Rev. Mod. Phys.

43 36 (1971).
[28] J. M. Kosterlitz, and D. J. Thouless, J. Phys. C 6, 1181

(1973).
[29] S. F. Edwards, Proc. Phys. Soc. London 85, 613 (1965).
[30] P. J. Flory, Selected Works of Paul J. Flory (Stanford

University, Stanford, 1985).
[31] P. G. De Gennes, Introduction to Polymer Dynamics

(Lezioni Lincee), (Cambridge University Press, Cambridge,
England, 1990);

[32] K. C. Neuman and A. Nagy, Nat. Methods 5, 491 (2008).
[33] H. Kleinert, Path Integrals in Quantum Mechanics,

Statistics, Polymer Physics, and Financial Markets
(World Scientific, Singapore, 2009).

[34] These arguments are based on the thermodynamic limit, in
which the infinite number of excited bound states are
exponentially filtered out at large l. For finite l, experimental
settings will still record angular deviations sublinear in l: the
helical structure is not extensive, in the sense that its
winding angle is not. To obtain results at finite l further
infrared regularization is needed, as for all spectra
that possess an accumulation point in E ¼ 0. See, for
instance, S. M. Blinder, J. Math. Phys. (N.Y.) 36, 1208,
(1995) and references therein.

[35] The fact that Δfω̄ becomes unbounded from below in ω̄
when T > 2jΓj is a consequence of neglecting the cutoff in
this heuristic computation.

[36] J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena (Clarendon, Oxford, 2002).

[37] A. Inomata, G. Junker, and J. Raynolds, J. Phys. A 45,
075301 (2012).

PRL 112, 070401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

070401-5

http://dx.doi.org/10.1103/PhysRev.80.797
http://dx.doi.org/10.1103/PhysRevD.48.5940
http://dx.doi.org/10.1209/0295-5075/15/7/005
http://dx.doi.org/10.1016/j.aop.2009.10.002
http://dx.doi.org/10.1016/j.aop.2009.10.002
http://dx.doi.org/10.1103/PhysRevD.80.125005
http://dx.doi.org/10.1119/1.2165248
http://dx.doi.org/10.1103/PhysRevLett.85.1590
http://dx.doi.org/10.1103/PhysRevD.76.086004
http://dx.doi.org/10.1063/1.4804356
http://dx.doi.org/10.1063/1.4804356
http://dx.doi.org/10.1016/0370-2693(70)90349-7
http://dx.doi.org/10.1016/0375-9474(73)90510-1
http://dx.doi.org/10.1038/nature04626
http://dx.doi.org/10.1103/PhysRev.153.1
http://dx.doi.org/10.1103/PhysRevLett.87.220402
http://dx.doi.org/10.1103/PhysRevLett.81.4553
http://dx.doi.org/10.1103/PhysRevLett.81.4553
http://dx.doi.org/10.1103/PhysRevD.68.125013
http://dx.doi.org/10.1103/PhysRevD.68.125013
http://dx.doi.org/10.1209/epl/i1997-00259-y
http://dx.doi.org/10.1209/epl/i1997-00259-y
http://dx.doi.org/10.1103/PhysRev.187.732
http://dx.doi.org/10.1007/BF01645749
http://dx.doi.org/10.1103/PhysRevB.56.8945
http://dx.doi.org/10.1007/BF00249091
http://dx.doi.org/10.1007/BF01221884
http://dx.doi.org/10.1103/RevModPhys.43.36
http://dx.doi.org/10.1103/RevModPhys.43.36
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0370-1328/85/4/301
http://dx.doi.org/10.1038/nmeth.1218
http://dx.doi.org/10.1063/1.531115
http://dx.doi.org/10.1063/1.531115
http://dx.doi.org/10.1088/1751-8113/45/7/075301
http://dx.doi.org/10.1088/1751-8113/45/7/075301

