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We construct the general free energy governing long-wavelength magnetism in two dimensional oxide
heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in
the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing
in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by
thermal fluctuations.
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Introduction.—Metallic interfaces between insulating
oxides, such as SrTiO3 (STO)-LaAlO3 (LAO) or STO-
GdTiO3, provide a versatile platform to study two-
dimensional electron liquids. Numerous experiments have
observed magnetism in such structures [1–9], which has
generated tremendous interest in emergent many-body
phenomena of the interfacial electrons. The mechanism
behind the magnetism is presently controversial. Even
theory has not yet reached a consensus on whether the
magnetic moments arise from localized or extended elec-
trons. Possible explanations include a charge ordered state
of interfacial electrons [10,11], ferromagnetism of a single
TiO2 layer mediated by Ruderman-Kittel-Kasuya-Yosida
coupling from extended subbands [12], fully itinerant
magnetism [13], local moment formation assisted by dis-
order [13], and oxygen defect states [14]. One may even
contemplate extrinsic explanations [15].
Despite these uncertainties, the macroscopic properties

of the magnetization and its consequences for transport are
interesting and require theoretical understanding. In LAO-
STO, torque magnetometry measurements indicate in-plane
moments with unusual field dependence [2], and significant
spin-orbit coupling (SOC) effects are observed [16–18].
Experiments have demonstrated remarkable tunability of
electronic properties and phase transitions at the interface
[8,9,19–21], making this a promising platform to study the
interplay of ferromagnetism and SOC. The obvious fact
that the presence of an interface breaks inversion symmetry
suggests the possibility of analogies to novel helical and
Skyrmion states studied intensely recently in noncentro-
symmetric materials [22] such as MnSi [23], Fe0.5Co0.5Si
[24], and magnetic thin films [25–27].
In this Letter, we take a phenomenological approach

based on symmetry, which is valid irrespective of the
microscopics. We assume that only the SOC is weak (in a
precise sense formulated below) and describe the conse-
quences for magnetism. The generic form of the free energy
is derived, and includes both anisotropy terms and a linear
derivative coupling [28–30] that plays a central role in

driving spin modulation instabilities. The general approach
is indeed quite analogous to the theory of the Skyrmion
lattice states just mentioned. Minimizing this free energy in
the weak SOC regime, we find a rich phase diagram (Fig. 1)
including in-plane ferromagnetic (FM), spiral, cone, and
Skyrmion lattice states. The Skyrmion lattice state is similar
to those discussed above, but has a staggered arrangement
of topological Skyrmion charge.
To complete our study of the phase diagram, we discuss

fluctuation effects based on renormalization group (RG)
analysis and general arguments. We determine the univer-
sality classes of the various transitions, and, more interest-
ingly, argue that fluctuations generate a nematic phase
between the spiral and paramagnetic ones.
Symmetry analysis and free energy.—Without SOC, the

phenomenological free energy (with Landau coefficients
m0, K, and d0 in standard notation [31]) describing
spin fluctuations near a ferromagnetic transition in two
dimensions is

FIG. 1 (color online). Mean field phase diagram parametrized
by the coupling g and −m0=mz, which may be taken as a measure
of reduced temperature (see text). On lowering the temperature,
the paramagnetic phase gives way to in-plane ferromagnetic
(FM), spiral, cone, and Skyrmion lattice phases, as shown. Solid
and dashed lines denote continuous and first order transitions,
respectively, as determined by an analysis of critical phenomena.
The shaded region marks a narrow sequence of two transitions, as
discussed in the text.
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F0 ¼
Z

d2r⃗

�
−m0jS⃗j2 þ K

X
j¼x=y

j∂jS⃗j2 þ d0jS⃗j4
�
; (1)

where S⃗ðr⃗Þ is a three component vector field describing
spin density, and we use j to index the two spatial
dimensions, with sums on repeated indices implied in
the following. Here, we have neglected the temporal
fluctuations, which is valid at nonzero temperature away
from the quantum critical regime. F0 has SO(3) spin
rotation symmetry. For a square lattice with SOC, of either
atomic or Rashba type, the symmetry is lower. There is
a space-spin combined lattice rotation symmetry C4,
defined as

C4∶

2
64
Sxðr⃗Þ
Syðr⃗Þ
Szðr⃗Þ

3
75 → OðαÞ

2
64
SxðO−1ðαÞr⃗Þ
SyðO−1ðαÞr⃗Þ
SzðO−1ðαÞr⃗Þ

3
75; (2)

with

O ¼
�
OðαÞ 0

0 1

�

and

OðαÞ ¼
�
cosðαÞ − sinðαÞ
sinðαÞ cosðαÞ

�
;

where α takes the values of 0, π=2, π, or 3π=2. And there
is a reflection symmetry R, where S⃗ transforms as a
pseudovector

R∶

2
64
Sxðx; yÞ
Syðx; yÞ
Szðx; yÞ

3
75 →

2
64

Sxð−x; yÞ
−Syð−x; yÞ
−Szð−x; yÞ

3
75 (3)

Also, we have time-reversal symmetry T ∶S⃗ → −S⃗.
The general form of non-SO(3)-invariant terms in the

free energy consistent with these symmetries is
F ¼ F0 þ ΔF, with

ΔF ¼
Z

d2r⃗fmzS2z þ λSz∂jSj þ b1½ð∂xSyÞ2 þ ð∂ySxÞ2�

þ b2∂xSx∂ySy þ b3∂jSz∂jSz

þ d1S4z þ d2S2xS2y þ d3S2zSjSj þOð∂2S4; S6Þg; (4)

where mz, λ, b1;2;3, and d1;2;3 are phenomenological
coupling constants [31]. These terms arise from SOC,
and we anticipate λ ∝ OðλSOÞ, mz ∝ Oðλ2SOÞ, and b1, b2,
b3 ∝ Oðλ2SOÞ, where λSO is the microscopic SOC strength.
We verify this explicitly for a microscopic model to be
discussed elsewhere [32]. However, we note that the theory
does not require this scaling, but only that λ, mz, b1;2;3 are
small for weak SOC. Note that λ is linear in derivatives,
which suggests it is possible to lower the energy by forming

a state with a nonzero wave vector. This is borne out by
more detailed analysis, as we will see.
Mean field phase diagram.—Near the spin ordering

transition temperature Tc, the spin configuration is con-
trolled by the quadratic part of the free energy, which reads

Fð2Þ ¼
Z

d2q⃗
ð2πÞ2 Tαβðq⃗Þ ~Sαðq⃗Þ ~Sβð−q⃗Þ; (5)

after a Fourier transformation Sαðr⃗Þ ¼
R ðd2q⃗=

ð2πÞ2Þ ~Sαðq⃗Þeiq⃗·r⃗: The matrix T in Eq. (5) is given by

Tðq⃗Þ ¼ ð−m0 þ Kq⃗2Þ13×3

þ

2
64

b1q2y
b2
2
qxqy

iλ
2
qx

b2
2
qxqy b1q2x

iλ
2
qy

− iλ
2
qx − iλ

2
qy mz þ b3q⃗2

3
75: (6)

We assume mz > 0, which favors in-plane moments, as is
typical for 2D systems due to dipolar effects, and in
accordance with experiments on LAO-STO [2].
Neglecting for the moment the b1;2;3 terms, we obtain the
lowest eigenvalue of the T matrix as

ϵðq⃗Þ ¼−m0þKq2þ 1

2
½mz−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

z þ λ2q2
q

� þOðbq2Þ: (7)

Introducing the dimensionless ratio

g≡ λ2

4Kmz
;

one observes that when g > 1, ϵðqÞ is indeed minimized by
a nonzero wave vector q ¼ Q, where

Q ¼ λ

4K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 1

p
g

:

For g < 1, the out-of-plane component of the spiral is too
costlyandtheminimumremainsatq ¼ 0.Thecorresponding
eigenvalue is

ϵðQÞ ¼ −m0 −mzðg − 1Þ2
4g

Θðg − 1Þ; (8)

where ΘðxÞ is the Heaviside step function.
The couplings b1;2;3 can be treated perturbatively, and

produce anisotropy in q⃗ space. The leading order correction
to the eigenvalue is

Δϵðq⃗Þ ¼ κ−b3 þ κþð2b1 þ b2Þ
q2xq2y
q4

;

where κ� ¼ ðq2=2Þð1�mz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

z þ q2λ2
p

Þ > 0. This
favors axial spirals with wave vectors Q⃗1 ¼ ðQ; 0Þ and
Q⃗2 ¼ ð0; QÞ if b1 > −ðb2=2Þ, and diagonal spirals
with Q⃗1 ¼ ð1= ffiffiffi

2
p ÞðQ;QÞ and Q⃗2 ¼ ð1= ffiffiffi

2
p Þð−Q;QÞ

otherwise.
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When ϵðQ⃗Þ < 0, the system orders, and we introduce
two complex order parameters ϕ1, ϕ2 by writing

S⃗ðr⃗Þ ¼
X
ν¼1;2

½ϕνðr⃗ÞeiQ⃗ν·r⃗e⃗ν þ c:c:�; (9)

where e⃗ν is the eigenvector of the T matrix at momentum Q⃗ν.
For the axial spiral phases, these are e⃗axial1 ≈ −i cosðφ=2Þx̂þ
sinðφ=2Þẑ and e⃗axial2 ≈ −i cosðφ=2Þŷþ sinðφ=2Þẑ, where

tan φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 1

p
. The eigenvectors for diagonal spiral

phases aregivenbyaπ=4 rotation as e⃗diagν ¼ O½−ðπ=4Þ�e⃗axialν :
The above analysis determines the modes involved in the

ordering just below the transition from the paramagnetic
state, ϵðQÞ ¼ 0− [Eq. (8)], when the magnitude of S⃗ is
infinitesimal. For g < 1, this implies in-plane ferromag-
netism, while for g > 1, there is a degeneracy of states with
different choices of ϕν. This is split by quartic terms in the
free energy, which can be written as

fspiral ≈ 4ϵðQÞðρ1 þ ρ2Þ þ 4d0f½4þ 2cos2ðφÞ�ðρ1 þ ρ2Þ2
þ 4½1 − 2 cosðφÞ�ρ1ρ2g; (10)

with ρν ¼ ð1=2Þjϕνj2. Other quartic terms d1, d2, and d3
are not considered because they only provide subleading
corrections here. From Eq. (10), spin modulations with two
components jϕ1j ¼ jϕ2j are favorable if cosðφÞ > ð1=2Þ;
otherwise, a spiral phase with (ϕ1 ¼ 0, ϕ2 ≠ 0) or (ϕ1 ≠ 0,
ϕ2 ¼ 0) is favorable. The boundary between these two is at
g ¼ 2. The spin configuration in the two-component
ðϕ1;ϕ2Þ phase is plotted in Fig. 2, showing that it can
be regarded as a Skyrmion lattice, which is a crystalline
state of spirals with one spin texture per unit cell. Different
from previous Skyrmions discussed for other chiral mag-
nets [22,33,34], the present Skyrmion lattice state has nodal
points (Fig. 2), which are protected by the space-spin
combined C4 and time-reversal symmetries. The nodal
points can be removed by breaking time-reversal symmetry,
for example, with an external magnetic field.
On lowering temperature further, the competition among

phases shifts, with quartic terms playing a more important

role. By a combination of stability analysis of the above
ordered states and numerical or analytical minimization of
the free energy, we establish the phase diagram in Fig. 1.
The minimal free-energy states can be approximately
expressed in the form

S⃗ðr⃗Þ ¼ S⃗0 þ
X
ν¼1;2

½ϕνðr⃗ÞeiQ⃗ν·r⃗e⃗ν þ c:c:�;

where S⃗0, ϕν, e⃗ν are parameters that vary in the different
phases. Between FM and spiral phases, we obtain a coexist-
ence state,withboth S⃗0 andoneϕν nonzero (and S⃗0 · e⃗ν ¼ 0),
known as a “cone” state. This state arises due to the
competition of linear derivative and quartic terms in the free
energy. The boundaries of the cone state with the FM and

spiral phases are given, respectively, by g ¼ 1þ
ffiffiffiffiffiffiffiffiffi
2d2m0

d0mz

q
(to leading order inm0) and−ðm0=mzÞ ¼ −ð1=2Þgðg − 1Þ2,
and represent continuous transitions. The cone state can also
be reached from a Skyrmion lattice state by lowering the
temperature. The phase transition from the Skyrmion lattice
to the cone state is found to be first order. An intermediate
phase, an anisotropic two-component spiral state, occurs in a
narrow transition region between the spiral and Skyrmion
lattice states (Fig. 1), via a pair of second order transitions.
Fluctuation effects.—The above mean-field analysis

neglects fluctuation effects, which can be significant in
two-dimensional systemswith continuous broken symmetry.
Here we discuss them based upon RG and other arguments.
The in-plane ferromagnetic state, as well as the uniform

component of the polarization in the coexistence or cone
state, is pinned by anisotropy arising from SOC to lie along
one of the easy axes. Thus, it behaves as a discrete Ising
order parameter and long-range order is thereby stabilized
by SOC. The situation is more subtle for the spiral states,
which have a continuous degeneracy associated with the
phase(s) of ϕν. Note that, as a result of spatial translation
symmetry, the problem has an emergent Uð1Þ × Uð1Þ
symmetry: ϕν → ϕνeiθν . This is true for both axial and
diagonal spiral phases.
Deep inside the spiral phases, the effect of fluctuations is

understood simply by rewriting φν ¼ jφνjeiϑν and consid-
ering quadratic fluctuations of ϑν. These are, as usual,
logarithmic, and thereby generate power-law correlations
of the nonzero φν fields. Thus, the spiral order becomes
quasi-long-range rather than truly static, though the physics
is otherwise largely unchanged.
The transitions between the spiral and other phases are

more interesting. They can be understood, following the
pioneering work of Kosterlitz and Thouless (KT), from the
point of view of unbinding of topological defects. This
gives rather different results for the two spiral phases.
Consider first the spiral phase, where only a single spiral

order parameter is nonzero. The order parameter manifold
consists of two disconnected parts, associated with the two
possible wave vectors. Here, there are two types of topo-
logical defects. The first is a vortex in the phase of the spiral,

FIG. 2 (color online). Spin configuration of an axial Skyrmion
lattice state. One unit cell is plotted here. Nodal points where the
spin moment vanishes, i.e., Sx ¼ Sy ¼ Sz ¼ 0, are stable in the
presence of the space-spin combined C4 and time-reversal
symmetries.
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which, as usual, is a point defect with a logarithmic energy
cost (see Fig. S1 in the Supplementary Material [35]). The
second is a domain wall separating regions of the two
possible spiral wave vectors Q⃗1 and Q⃗2. This is a defect
with a nonzero large tension in two dimensions. The
relatively small energy cost of the vortices is readily over-
come by entropy, and we expect a conventional KT
transition with increasing temperature. For example, the
anomalous dimension at this transition is expected to be 1=4.
Since the domain walls are not involved in this transition,

their line tension remains positive just above the KT
transition, and the system remains in a single “wave vector”
domain. Formally, this means the order parameter
hρ1 − ρ2i ≠ 0, so the C4 rotation symmetry is spontane-
ously broken, though time-reversal and translation sym-
metry is restored. Fluctuations, therefore, induce an
intermediate nematic phase between the spiral and para-
magnetic phases. The transition from the nematic to para-
magnetic state occurs at a higher temperature, and is
expected to be of Ising type.
Applying the same reasoning, the transition from the

cone to the FM phase is also expected to be KT-like. This is
consistent because the C4 symmetry is broken in the FM by
the uniform in-plane moment.
Now consider the Skyrmion lattice state. Here, the order

parameter manifold is continuous and fully connected. It is
described just by the angular variables ϑ1 and ϑ2, which
translate the lattice in either the x or y direction. Con-
sequently, the only defects are vortices in the two phase
fields, or equivalently, dislocations of the lattice (see
Fig. S2 in the Supplemental Material [35]). Therefore, only
a single transition is expected. This may also be guessed
from the fact that the Skyrmion lattice preserves C4

symmetry. The transition should be described as the melting
of this Skyrmion lattice, which appears to be in the same
universality class as the melting of a square lattice on a
tetragonal but incommensurate substrate. Such 2D melting
transitions were analyzed by Nelson and Halperin, and share
similar characteristics with KT transitions [36,37].
The above conclusions describe likely critical properties

based on universality from the general theory of 2D critical
phenomena, but, for example, first order transitions could
also occur for nonuniversal reasons. Hence, we vetted them
against a nonperturbative but approximate RG [38] calcu-
lation for spiral states, where it is useful to rewrite the free
energy [Eqs. (1) and (4)] in terms of slowly varying order
parameters φν as

F ¼
Z

dr⃗

�
Z
2
½ðj∂xφ1j2 þ j∂yφ2j2Þ

þ γðj∂yφ1j2 þ j∂xφ2j2Þ� þUðρ1;ρ2Þ þOð∂4Þ
�
: (11)

To quartic order in the fields, the potential term Uðρ1; ρ2Þ
takes the form

Uðρ1; ρ2Þ ¼
u1
2
ðρ1 þ ρ2 − ρ0Þ2 þ u2ρ1ρ2: (12)

The latter can be viewed as simply a rewriting of Eq. (10),
and the former following the standard notation [38] allows
for slow spatial variations of the spiral order parameters.
The theory thus has a momentum cutoff Λ. Symmetries are
made transparent in the rewriting form of the free energy.
Note that both axial and diagonal spiral phases are
described by the same free energy, up to a π=4 rotation
of coordinates.
Introducingdimensionless parameters ~u1;2 ¼ Z−2Λ−2u1;2;

~ρ0 ¼ Zρ0, from the free energy inEq. (11), calculationsof 1PI
RG equations are standard following Ref. [38], and two
illuminating limits are given here. First, as ~ρ0 approaches
∞, β functions are asymptotically

βð~ρ0Þ ¼ Oð~ρ−20 Þ; η ¼ −Λ∂Λ log Z

¼ 1

4π
ffiffiffi
γ

p
~ρ0

þOð~ρ−20 Þ;

βð ~u1Þ ¼ ð2 − 2ηÞ ~u1 − log 2

2π
ffiffiffi
γ

p ~u21 þOð~ρ−30 Þ;

βð ~u2Þ ¼ ð2 − 2ηÞ ~u2 − log 2

2π
ffiffiffi
γ

p ~u1 ~u2 þOð~ρ−30 Þ: (13)

We thus have an approximate fixed line at
~u�1 ¼ 4π

ffiffiffi
γ

p ð1 − η�Þ= log 2,withη� ¼ 1=4π
ffiffiffi
γ

p
~ρ0.Thisfixed

line is parametrized by ~ρ0. The second limit is ~ρ0 ¼ 0, γ → 1,
where the β functions are

βð ~u1Þ ¼ 2~u1 − log 2

π
ffiffiffi
γ

p f5~u21 þ ð ~u1 þ ~u2Þ2g;

βð ~u2Þ ¼ 2~u2 − log 2

π
ffiffiffi
γ

p ½6~u1 þ ~u2� ~u2 þO½ðγ − 1Þ2�: (14)

Here we have βð ~u1Þ ¼ βð ~u2Þ ¼ 0 at the fixed
points ð ~u�1 ¼ ðπ ffiffiffi

γ
p

=3 log 2Þ; ~u�2 ¼ 0Þ.
In the intermediate regime we solve RG equations

numerically and find that ~ρ0 flows to zero above the KT
transition of spiral states when ~ρ0 is smaller than some
critical value ~ρc0, dependent on ~u1 and ~u2. Thus, we know
from the limit [Eq. (14) and Fig. 3(b)] that ~u1 flows to

FIG. 3 (color online). Vector illustration of ðβð ~u1Þ; βð ~u2ÞÞ. In
this plot we use γ ¼ 1. In (a), where ~ρ0 ¼ 1, there is an approxi-
mate fixed point at ð ~u�1; ~u2 → þ∞Þ. In (b), where ~ρ0 ¼ 0, RG
would flow to a regime with ~u1 < 0. For γ slightly deviated from 1,
e.g., γ ¼ 1.5, the qualitative features of this plot do not change.
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negative values and ~u2 > 0 flows to large positive values
above the KT transition, which predicts a nematic phase
with an order parameter hρ1 − ρ2i. This indicates that the
nematic phase melts to paramagnetic through a first order
phase transition at higher temperature.
Conclusion.—We determined a magnetic phase diagram

for 2D electron systems with weak but non-negligible SOC,
relevant to oxide heterostructures, but which is largely
independent of the still unresolved microscopic origin of
magnetism. Remarkably, we found a Skyrmion lattice
phase similar to recent observations in helimagnets. The
complex spin textures and nematic state we found should
be detectable magnetically (see, e.g., the discussion of
magnetization of spiral states in Ref. [11]), but also through
transport, which should evince spontaneous anisotropy as
well as nonlinear effects typical in sliding incommensurate
spin-density waves. The influence of Berry phases on
electrons [33], e.g., the anomalous Hall effect, is a promising
direction for the future. These states may also be relevant to
certain schemes for engineering Majorana fermions, which
require noncollinear magnetic moments [39].
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