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The density of Andreev levels in a normal metal (N) in contact with two superconductors (S) is known to
exhibit an induced minigap related to the inverse dwell time. We predict a small secondary gap just below
the superconducting gap edge—a feature that has been overlooked so far in numerous microscopic studies
of the density of states in S-N-S structures. In a generic structure with N being a chaotic cavity, the
secondary gap is the widest at zero phase bias. It closes at some finite phase bias, forming the shape of a
“smile”. Asymmetric couplings give even richer gap structures near the phase difference π. All the features
found should be amendable to experimental detection in high-resolution low-temperature tunneling
spectroscopy.
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The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity was
discovered almost 50 years ago [1]. Soon afterwards, it was
predicted, theoretically, for diffusive structures that a so-
called minigap of the order of the inverse dwell time in
the normal metal (or the Thouless energy) appears in the
spectrum [2]. The energy-dependent DOS reflects the
energy scale of electron-hole decoherence, and is sensitive
to the distance, the geometry, and the properties of the
contact between the normal metal and the superconductor
[3–5]. The details of the local density of states in proximity
structures have been investigated experimentally many
years later [6–10] and the theoretical predictions have been
confirmed [11–13] in detail.
Substantial interest has been paid to the density of states

in a finite normal metal between two superconducting leads
with different superconducting phases [14,15]. The differ-
ence between diffusive [5] and classical ballistic [16]
dynamics has been investigated [17]. Many publications
have addressed the dependence of the minigap on the
competition between dwell and Ehrenfest time [18,19]. The
most generic model in this context is that of a chaotic
cavity, where a piece of normal metal is connected to the
superconductors by means of ballistic point contacts that
dominate the resistance of the structure in the normal state.
The Thouless energy is given by ETh ¼ ðGΣ=GQÞδS ,GQ ¼
e2=πℏ being the conductance quantum, GΣ ≫ GQ being
the total conductance of the contacts, and δS being the level
spacing in the normal metal provided the contacts are
closed. The DOS in chaotic cavities has been studied for
years [19–22].
The DOS depends on the ratio of ETh and the super-

conducting energy gap Δ, and on the superconducting
phase difference. If the dwell time exceeds the Ehrenfest
time, qualitative features of the DOS do not seem to depend

much on the contact nature and are the same for ballistic,
diffusive, and tunnel contacts. Mesoscopic fluctuations of
the DOS [23,24] are small provided G ≫ GQ. It looks like
everything is understood, perhaps except a small dip or
peak in the DOS just at the gap edge for the diffusive case,
which has been seen in [3,5,25–28], but never attracted
proper attention.
In this Letter, we demonstrate that the appearance of a

secondary gap, in addition to the well-known gap ∼ETh in
the DOS around the Fermi level, is a generic feature of
S-N-S structure containing high-transmission S-N contacts.
In the case of a chaotic cavity with two identical ballistic
contacts, the secondary gap exists for any ETh > 0.68Δ and
vanishes as Δ3=E2

Th for ETh ≫ Δ, where Δ is the super-
conducting gap. The gap closes at finite superconducting
phase difference φ and its contour in the energy-phase plot
forms a characteristic smile pattern, see Fig. 1. The gap can
be attached to the gap edge at E ¼ Δ at one of the
boundaries or completely detached from it. For asymmetric
contacts, more secondary gaps can emerge near a phase
difference φ ¼ π and close to zero energy, see Fig. 4. The
developed theory is applicable, for example, to an S-N-S
system with S-N junctions of area s ≪ L2 and with the
linear dimension L of the normal region sufficiently small,
L=ξ≲ s=L2, compared to the coherence length
ξ ¼ ℏvF=Δ of the superconductors.
In a general context, we have demonstrated an emer-

gence of the gaps in the semiclassical spectrum of a random
quantum system upon changing a parameter. In this
spectrum, the neighboring levels are typically separated
by the small distance≃δS: the change of parameter causing
the gap opening will split the system of levels pushing them
apart at a much larger energy scale. This opens up
interesting possibilities for quantum manipulation. The
statistics of random levels that has been elaborated in
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detail [29] for the case of uniform semiclassical density of
states is a challenge to understand in the case of such
emergent gaps. Such understanding is likely to advance the
theory of quantum disordered systems in general.
To find the density of states in the cavity between two

superconducting leads, we make use of the powerful
quasiclassical Green’s function method. Unlike the bridge
geometry of [27], we assume that, for the geometry we
consider, the spatial dependence of the Green’s functions is
not relevant. Therefore, we can make use of the discretized
form of the method—the so-called quantum circuit theory
[30,31]. The crucial equation that relates the retarded
matrix Green’s functions Ĝc in the normal metal and those
Ĝ1;2 in the two superconductors 1,2, takes the form of
matrix current conservation

Î1c þ Î2c þ iGΣðE=EThÞ½τ̂3; ĜcðEÞ� ¼ 0: (1)

Here, the matrix currents for ballistic junctions are given by
Îic ¼ Gi½Ĝc; Ĝi�=ð1þ fĜc; Ĝig=2Þ where G1;2 are the
conductances of the contacts [32] and GΣ ¼ G1 þ G2 is
the total conductance. τ̂i denote the Pauli matrices in
Nambu space and ETh describes electron-hole decoherence
in the normal metal due to a finite dwell time. To avoid
confusion, we remark that electron-hole decoherence here

refers to the effect of randomization of the relative phase
between electron and hole. The two superconducting leads
have the same energy gap Δ and phases �φ=2, so that the
corresponding Green’s functions read Ĝ1;2 ¼ cτ̂3 þ
is½τ̂1 cosðφ=2Þ � τ̂2 sinðφ=2Þ� with the spectral functions
c and s being given by c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

¼ E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − Δ2
p

for
E > Δ and by c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

¼ −iE= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 − E2
p

for E < Δ.
The Green’s function in the normal metal node is para-
metrized as Ĝc ¼ gτ̂3 þ if½τ̂1 cosðϕ=2Þ − τ̂2 sinðϕ=2Þ�.
Finally, Eq. (1) has to be solved under the constraint
Ĝ2

c ¼ 1, which is equivalent to g2 − f2 ¼ 1. In the general
case, one has to find a numerical solution of two equations
in two complex variables. The density of states NðEÞ is
finally obtained from Ĝc by using NðEÞ=N0 ¼
RefTrτ̂3ĜcðEÞg=2 ¼ Refgg, N0 being the density of states
in the normal case.
First, we discuss the situation for a symmetric setup

G1 ¼ G2. In this case, the phase of the central node is
determined from symmetry as ϕ ¼ 0 and the problem is
reduced to solving a single-variable equation. We transform
Eq. (1) into

i
E
ETh

f þ gs cosðφ=2Þ − fc
1þ cg − sf cosðφ=2Þ ¼ 0: (2)

After elimination of f, Eq. (2) is solved numerically. The
resulting density of states showing the secondary gap and
its generic properties for different Thouless energies and
phases are summarized in Figs. 1 and 2.
Before discussing the full numerical solution, we present

analytical results in the limit of large Thouless energies
ETh ≫ Δ. We linearize Eq. (2) in the parameter range of
interest (i.e., δ ¼ ðΔ − EÞ=Δ ≪ 1, φ ≪ 1) and find

1

2g2
−
�

φ2

8
− δ

�

þ Δ
ETh

�

i
2g

þ i

�

φ2

8
− δ

�

g − ffiffiffiffiffi

2δ
p �

¼ 0:

(3)

Finding the conditions at which this cubic equation has a
purely imaginary solution corresponding to the gap, we can
determine the expressions for the maximal width of the
secondary gap δc and the critical phase φc at which the gap
closes. Thus, we obtain for ETh ≫ Δ

δc ≈ ð17=2 − 6
ffiffiffi

2
p

Þ
�

Δ
ETh

�

2

;

φc ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð5
ffiffiffi

5
p − 11Þ

q Δ
ETh

;

which is in agreement with our numerical results. Both
the width and the critical phase φc are small in this limit and
the upper edge of the gap is attached to E ¼ Δ.
Additionally, from Eq. (3) the DOS in the region between
both gaps can be calculated analytically and the result is
shown in Fig. 3. For the upper minigap edge, we find

FIG. 1 (color online). Upper plot: DOS in the central region at
zero phase difference and ETh ¼ Δ showing the usual minigap
around E ¼ 0 and additionally a secondary gap below E ¼ Δ. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudoterminal labeled with ETh accounts
for random phase shifts between electron and hole components of
the quasiparticle wave functions (not implying an electric con-
nection to the ground). Lower plot: DOS near Δ illustrating the
phase dependence of the secondary gap.
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δmini ≈ ð17=2þ 6
ffiffiffi

2
p ÞðΔ=EThÞ2. The DOS above and

below the gaps vanish like square roots ½Nðδc þ xÞ=
N0 ≈ 2ðETh =ΔÞ2

ffiffiffi

x
p

=ð3 ffiffiffi

2
p − 4Þ3=2; Nðδmini − xÞ=N0 ≈

2ðETh=ΔÞ2
ffiffiffi

x
p

=ð3 ffiffiffi

2
p þ 4Þ3=2� . The maximum of the

DOS in the region between the gaps lies at δmax ≈
ðΔ=EThÞ2=18 and has the value

ffiffiffi

2
p

ETh=Δ.
We attribute the origin of the secondary minigap to the

level repulsion between the discrete levels with energy
below Δ and the states of continuum having a divergent
density of states at E → Δþ 0. We may illustrate it by the

solution of a model [4] containing a single resonant level
instead of the cavity. It yields an Andreev level EA which
never “sticks” to E ¼ Δ. In the limit of a broad resonance
(Γ ≫ Δ), the corresponding minigap derived in the model
of Ref. [4] is Δ − EA ∼ Δ3=Γ2. It is natural to associate
qualitatively ETh of our problem with Γ, which indeed
yields δc ∼ ðΔ=EThÞ2, in agreement with the rigorous
result. Finding the numerical coefficient here and the
phase dependence of the gap is beyond the scope of this
illustration.
As already anticipated in Fig. 1, the E-φ plot of the

secondary gap shows a smile shape, with a finite extension
in phase and its maximum size in energy at zero phase
difference. The dependence of the gap edges and φc on
ETh=Δ≃ 1 is displayed in the lower part of Fig. 2 while the
shape of the gap in the E-φ plane for a set of various
Thouless energies is shown in the upper part. We see that
the secondary gap first increases with decreasing ETh yet
reaches a maximum width ≃0.01Δ at ETh ≈ Δ and further
decreases. The upper gap edge detaches fromΔ at ETh ¼ Δ
and the secondary gap disappears entirely at ETh ≈ 0.68Δ.
The critical phase φc exhibits a cusplike maximum at ETh
slightly below the value at which the detachment takes
place. The relatively small size of the secondary gap
perhaps explains the fact that it has not been discovered
in the previous numerical simulations. Furthermore, the
phase dependence of the secondary gap also has interesting
implications for the underlying Andreev level density. In
the standard resonant level model [4], Andreev levels
always move toward the Fermi level with an increase in
the phase difference. The opposite behavior of the levels at
the lower edge of our secondary gap hints at the importance
played by the energy-dependent correlations of the scatter-
ing channels for a finite Thouless energy.
For a general asymmetric setup with G1 ≠ G2, the phase

ϕ on the node is no longer zero and current conservation
provides two equations in two complex variables ϕ and g.
Since the equations are straightforward but lengthy, we do
not give them here. Asymmetry only enters our calculations
via a dimensionless asymmetry parameter a ¼ G1=G2. The
dependence of the DOS on a is shown in Fig. 4 (a and 1=a
give identical pictures).
We see that for asymmetric setups the situation becomes

more complicated as more secondary gaps open in the
DOS. It is worth noting that for φ ¼ 0 (left edge of each
plot) the asymmetry does not manifest itself in the DOS,
since such a setup is equivalent to a single superconductor
connected to a normal metal with a single contact with total
conductance G1 þ G2. With increasing asymmetry, the
effect of the superconductors is dominated by the stronger
contact, since the phase on the node becomes “pinned” to
the phase of the more strongly coupled superconductor.
Thus, the overall phase dependence of the DOS gets
weaker and approaches the φ ¼ 0 result for almost all
phases and energies. Despite this, qualitative changes occur

FIG. 2 (color online). Upper plot: Disappearing secondary gap
for ETh < Δ. The colored regions represent the gapped part of the
spectrum for different Thouless energies. Lower plot: Critical
parameters of the secondary gap for G1 ¼ G2 in dependence of
ETh: Upper gap edge for φ ¼ 0 (red), lower gap edge for φ ¼ 0
(dashed blue) and critical phase (dotted green). The colored
regions denote the gap.

FIG. 3 (color online). Universal shape of the DOS for φ ¼ 0
between the gaps in the limit ETh ≫ Δ. The curve is obtained
from Eq. (3) and the characteristics are given in the main text.
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at energies close to Δ (upper row of the plots). There, at
increasing a we observe a formation of yet another gap
centered at φ ¼ π. In the limit of strong asymmetry, both
gaps fill almost all space above a certain energy. However,
they are always separated by a thin strip of finite DOS. In
the lower row of plots, we concentrate at energies close to
zero. There, we see the usual minigap≃ETh with the lower
edge attached to zero. As known [33], the usual minigap
closes at φ ¼ π. A new element is yet another secondary
gap emerging at finite a around φ ¼ π. Similar to the upper
row, we see that this gap is also complementary to that
centered at φ ¼ 0. In the limit of large asymmetry, both
gaps fill almost all space below a certain energy. However,
as in the upper row of plots, they are always separated by a
thin strip of finite DOS.
The secondary gaps we found for the chaotic cavities

also persist for more general contacts, as long as the
distribution of the transmission eigenvalues has a gap
between T ¼ 0 and some finite Tmin value. Conversely,
the gaps do not appear if a substantial fraction of the
transmission eigenvalues is close to zero, as is the case for
tunnel, diffusive [34], or dirty contacts [31]. We note that in
our Letter, the so-called Ehrenfest time separating semi-
classical from wave dynamics is small and plays no role,
different from other studies [19,21]. Furthermore, our
predicted secondary gaps are also robust against a weak
spatial dependence as we discuss in the Supplemental
Material [35].
To conclude, we have shown that a smile-shaped

secondary gap just below the superconducting gap edge
Δ appears in the density of states of a cavity between two
superconductors. The gap becomes small for large
Thouless energies, closes at a finite phase difference

between the superconductors, and disappears at a critical
ETh ≃ 0.68Δ. These gap features are robust against asym-
metries of the contact conductances and nonballistic con-
tacts involving transmissions smaller than one. For an
asymmetric setup, we have found two more additional gaps
centered at phase difference π. It would be interesting to
experimentally observe our predictions, e.g., in multiter-
minal semiconductor or carbon nanotube cavities by means
of tunneling spectroscopy. On the theoretical side, it
presents a challenge to explore in more detail the level
correlations at the critical points, when the secondary gap
closes with phase.
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