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Symmetry is an important and basic topic in physics. The similarity renormalization group theory
provides a novel view to study the symmetries hidden in the Dirac Hamiltonian, especially for the deformed
system. Based on the similarity renormalization group theory, the contributions from the nonrelativistic
term, the spin-orbit term, the dynamical term, the relativistic modification of kinetic energy, and the Darwin
term are self-consistently extracted from a general Dirac Hamiltonian and, hence, we get an accurate
description for their dependence on the deformation. Taking an axially deformed nucleus as an example, we
find that the self-consistent description of the nonrelativistic term, spin-orbit term, and dynamical term is
crucial for understanding the relativistic symmetries and their breaking in a deformed nuclear system.
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The symmetries of the Dirac Hamiltonian play a key role
in the interpretation of many physical phenomena. Spin
symmetry (SS) occurs in the spectrum of mesons with
one heavy quark and it has been used to explain the absence
of quark spin-orbit splitting (spin doublets) [1], which is
observed in heavy-light quark mesons. Pseudospin sym-
metry (PSS) emerges in the single-nucleon spectrum. Two
single-nucleon orbitals with quantum numbers (n − 1,
lþ 2, j ¼ lþ 3=2) and (n, l, j ¼ lþ 1=2) are near
degenerate, and can be viewed as pseudospin doublets
( ~n ¼ n − 1, ~l ¼ lþ 1, j ¼ ~l� 1=2) [2,3]. This symmetry
is also present in deformed nuclei. The axially deformed
single-particle orbits with asymptotic Nilsson quantum
numbers (Ω ¼ Λþ 1=2½N; n3;Λ�) and (Ω ¼ Λþ 3=2
½N; n3;Λþ 2�) are quasidegenerate [4]. In addition, spin
and pseudospin symmetries are also concerned in atomic
and molecular physics with particles trapped in some
special atomic and molecular potentials [5,6].
For the above-mentioned reasons, there have been

comprehensive efforts to understand the origin of spin
and pseudospin symmetries. Based on the single-particle
Hamiltonian of the oscillator shell model, the origin of PSS
was connected with a special ratio in the strength of the
spin-orbit and orbit-orbit interactions [7], and a pseudo
state (~l, ~s) can be mapped from a normal state (l, s) by a
helicity unitary transformation [8]. A substantial progress
was achieved in Ref. [9], where, PSS was shown to be a
symmetry of the Dirac Hamiltonian with the pseudo-orbital
angular momentum ~l being nothing but the orbital angular
momentum of the lower component of the Dirac spinor.
The equality in magnitude but difference in sign of the
scalar potential S and vector potential V was suggested
as the exact PSS limit. This condition was extended to
dðSþ VÞ=dr ¼ 0 in Ref. [10], which can be approximately
satisfied in exotic nuclei. To better grasp the symmetries,
the SU(2) algebra was established in the Dirac Hamiltonian

[11]. Further, in the (pseudo)spin symmetry limit, the Dirac
Hamiltonian with special potentials was shown to possess
U(3) symmetry [12] and chiral symmetry [13,14]. The
supersymmetric description of the Dirac Hamiltonian was
presented in Refs. [15–17]. The symmetries were also
studied in resonant states [18,19], scattering states [20,21],
and the antinucleon spectrum [22,23]. More research on the
symmetries can be found in Refs. [24–26] and in the
references therein.
As there are no bound states in the PSS limit, much effort

has been devoted to the mechanism of pseudospin
breaking. By transforming the Dirac equation into a
Schrödinger-like equation, the influence of every compo-
nent on pseudospin breaking was checked and the dynami-
cal nature of PSS was suggested [23,27,28]. However, in
these studies, one inevitably encounters a singularity in
calculating the contribution of every component to the
pseudospin splitting and the coupling between the operator
and its eigenenergy in solving the Schrödinger-like equa-
tion for the lower component of the Dirac spinor. Recently,
we have applied the similarity renormalization group
(SRG) theory to the Dirac Hamiltonian for a spherical
system, and obtained a diagonal Dirac operator [29],
which is very useful in analyzing PSS hidden in the
Dirac Hamiltonian [30,31], since all defects in the usual
decoupling disappear. As pointed out in Ref. [25], the work
in Ref. [29] fills the gap between perturbation calculations
and supersymmetry descriptions. They have applied the
operator under the lowest-order approximation to study the
origin of PSS and its breaking mechanism by supersym-
metry quantum mechanics and perturbation theory [25].
By including the lowest-order spin-orbit term, they
have further investigated the spin-orbit effect on PSS
breaking [32].
However, the operator obtained in Ref. [29] is only

applicable for a spherical system. In this Letter we apply the
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SRG theory to a general Dirac Hamiltonian and transform
it into a diagonal form. The diagonal Dirac operator is
applicable to explore the symmetries of the Dirac
Hamiltonian for any deformed system, which is significant
not only for nuclei. As pointed out in Ref. [16], the
cylindrical geometries are relevant to a number of prob-
lems, including electron channeling in crystals, quark
confinement in spheroidal flux tubes, etc. Furthermore,
we have explicitly extracted these operators reflecting spin-
orbit coupling and the dynamical effect with any deformed
potential. These operators are useful in describing many
physical phenomena in different fields of physics, as the
spin-orbit interaction plays an important role in the spin
Hall effect [33] and spin-orbit coupled Bose-Einstein
condensates [34]. As an example, we apply the diagonal
Dirac operator to explore the relativistic symmetries for an
axially deformed nucleus, and investigate the deformed
effect and dynamical nature of the relativistic symmetries
in deformed nuclei.
For simplicity, we sketch our formalism with the

following Dirac Hamiltonian:

H ¼ βM þ α⃗ · p⃗þ ðβSþ VÞ; (1)

where S and V represent the scalar potential and vector
potential, respectively. For transforming H into a diagonal
form, Wegner’s formulation of the SRG theory is adopted
[35]. The initial Hamiltonian H is transformed by the
unitary operator UðlÞ according to

HðlÞ ¼ UðlÞHU†ðlÞ; Hð0Þ ¼ H; (2)

where l is a flow parameter. Differentiation of Eq. (2) gives
the flow equation as

d
dl

HðlÞ ¼ ½ηðlÞ; HðlÞ�; (3)

with the generator

ηðlÞ ¼ dUðlÞ
dl

U†ðlÞ ¼ −η†ðlÞ: (4)

The generator ηðlÞ should be chosen in such a way, so that
the off-diagonal matrix elements decay. A good choice is
defined by ηðlÞ ¼ ½HdðlÞ; HðlÞ�, where HdðlÞ is the diago-
nal part of HðlÞ [35]. For the Dirac Hamiltonian (1), it is
appropriate to choose ηðlÞ ¼ ½βM;HðlÞ� [29]. In the choice
of ηðlÞ, HðlÞ can be evolved into a diagonal form in the
limit l → ∞. By using the technique in Ref. [29], we have
obtained the diagonalized Dirac operator as

HD ¼
�
HP þM 0

0 −HC
P −M

�
; (5)

where HP is an operator describing a Dirac particle, and
its charge-conjugation HC

P is an operator describing a

Dirac antiparticle. The operator HP consists of the five
Hermitian components

HP ¼ Hn þHd þHc þHk þHw; (6)

where

Hn ¼ Σþ p2

2M
;

Hd ¼ −
1

2M2
ðSp2 − ∇S ·∇Þ þ S

2M3
ðSp2 − 2∇S ·∇Þ;

Hc ¼
1

4M2

�
1 − 2S

M

�
σ⃗ · ð∇Δ × p⃗Þ;

Hk ¼ −
p4

8M3
;

Hw ¼ 1

16M3
½2ðM − 2SÞ∇2Σþ ð∇ΣÞ2 þ 2∇Σ ·∇Δ�: (7)

Hn corresponds to the operator describing a Dirac particle
in the nonrelativistic limit. Hd is related to the dynamical
effect. The spin-orbit interaction is reflected in Hc. Hk
represents the relativistic modification of kinetic energy.
Hw can be viewed as the Darwin term. Σ ¼ V þ S and
Δ ¼ V − S denotes the combinations of the scalar potential
S and the vector potential V. As Hn, Hd, Hc, Hk, and Hw
are Hermitian, we can calculate the contribution of every
term to the single-particle energies, which is helpful to
disclose the origin of relativistic symmetries. For example,
the contribution of Hn to the energy level Ek can be
calculated by the formula hkjHnjki ¼

R
ψ�
kHnψkd3r⃗, where

k marks the single particle state considered. Different from
Ref. [29], HP here is applicable for any deformed system,
and can be used to explore the deformation driven effect of
the spin-orbit interaction and dynamical term, which is
interesting not only for nuclei, but also for quantum
controls and materials designs.
As HP is appropriate for any deformed system. As an

example, we apply it to an axially quadrupole-deformed
nucleus. The corresponding potentials are adopted as [36]

Sðr⃗Þ ¼ S0ðrÞ þ S2ðrÞP2ðθÞ;
Vðr⃗Þ ¼ V0ðrÞ þ V2ðrÞP2ðθÞ; (8)

where P2ðθÞ ¼ 1=2 ð3cos2θ − 1Þ. The radial parts of the
potentials in Eq. (8) take the Woods-Saxon form

S0ðrÞ ¼ SWSfðrÞ; S2ðrÞ ¼ −β2SWSkðrÞ;
V0ðrÞ ¼ VWSfðrÞ; V2ðrÞ ¼ −β2VWSkðrÞ; (9)

with fðrÞ ¼ 1=ð1þ exp ððr − RÞ=aÞÞ and kðrÞ ¼ rðdf
ðrÞ=drÞ. Here SWS and VWS, respectively the typical depths
of the scalar and vector potentials in the relativistic mean
field model, are chosen as −450 and 350 MeV, the
diffuseness of the potential a is fixed as 0.67 fm, and β2
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is the axial deformation parameter of the potential.
The radius R≡ r0A1=3 with r0 ¼ 1.27 fm. 154Dy is chosen
as an example. The energy spectra of HP are calculated
by expansion in the harmonic oscillator basis.
Figure 1 shows the contribution of every relativistic

modification to the single particle energies and its evolution
to β2 for a pair of spin and pseudospin doublets, which are
labeled with the asymptotic Nilsson quantum numbers
Ω½N; n3;Λ�. For simplicity of understanding, the corre-
sponding spherical notations are also marked there.
Similarly, this labeling scheme is also adopted in the next
figures. From Fig. 1, it can be seen that the total relativistic
modification comes mainly from the contributions of the
dynamical term Hd and the spin-orbit term Hc, while those
from the relativistic modification of kinetic energy Hk and
the Darwin term Hw are almost negligible. Furthermore,
these relativistic modifications from the dynamical term
and the spin-orbit term are, remarkably, associated with β2.
Over the range of deformation under consideration, the
energies contributed by the spin-orbit term are negative for
the spin aligned (pseudospin unaligned) states and positive
for the spin unaligned (pseudospin aligned) states, whereas
those contributed by the dynamical term are always
positive. These play important roles in the relativistic
symmetries.
Since these relativistic modifications are significant, it is

necessary to explore their influences on the relativistic
symmetries, which is helpful to disclose the origins of the
relativistic symmetries and their breaking mechanisms. In
Fig. 2, we demonstrate the variation of the energy splitting
between the spin doublets (hereinafter referred to as

“spin energy splitting”) with β2 for four pairs of spin
doublets. From Fig. 2(a), one can see that the spin energy
splitting comes almost entirely from the contribution of
the spin-orbit term Hc on the prolate side. The contribu-
tions of the nonrelativistic term Hn and the dynamical term
Hd to the spin energy splitting nearly cancel each other out,
while those from the relativistic modification of kinetic
energy Hk and the Darwin term Hw are negligible. In
addition, the spin energy splitting increases with increasing
deformation. The same case also appears in Figs. 2(b) and
2(d) for these doublets with Ω ¼ j, where Ω is the
projection of total angular momentum j on the third axis.
However, for these doublets with Ω < j [see Fig. 2(c)],
there is a slight deviation between the spin energy splitting
and that contributed by Hc. Nonetheless, spin symmetry
breaking in deformed nuclei comes mainly from the
spin-orbit term since the operator reflecting the spin-orbit
interaction is almost completely separated from the Dirac
Hamiltonian. On the oblate side, all of these terms includ-
ing the nonrelativistic, the spin-orbit coupling, and the
dynamical terms have important influences on the spin
energy splitting. Especially for the nonrelativistic term and
the spin-orbit term, their contributions to the spin energy
splitting are sensitive to β2. Significant deviations between
the spin energy splitting and that contributed by Hc reflect
the presence of non-negligible configuration mixing there.
Compared with spin symmetry, the origin of pseudospin

symmetry is more complicated for deformed nuclei. In
Fig. 3, we exhibit the variations of the energy splitting

FIG. 1 (color online). Comparisons of the contributions of all
the relativistic modifications to the single particle energies and
their correlations with the deformation parameter β2 for a pair
of spin and pseudospin doublets, where “dynam,” “spinorb,”
“relakin,” and “Darwin” denote the dynamical term, the spin-
orbit term, the relativistic modification of kinetic energy, and the
Darwin term, respectively. As a guide to the eyes, a sum of all the
relativistic modifications is marked “totalre.”

FIG. 2 (color online). Comparisons of the contributions of all
the terms in HP to the spin energy splitting and their correlations
with the deformation parameter β2 for four pairs of spin doublets.
Here “nonrela,” “dynam,” “spinorb,” “relakin,” and “Darwin”
denote the nonrelativistic part, the dynamical term, the spin-orbit
term, the relativistic modification of kinetic energy, and the
Darwin term, respectively. As a guide to the eyes, the total
pseudospin energy splitting is marked as “total.”
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between pseudospin doublets with β2 for four pairs of
pseudospin doublets. The variation of the total energy
splitting with β2 is dominated by the three parts: the
nonrelativistic term Hn, the spin-orbit term Hc, and the
dynamical term Hd. The influences from the relativistic
modification of kinetic energy Hk and the Darwin term Hw
are fairly minor. Over the range of β2 here, the energy
splitting from the nonrelativistic term Hn is the most
remarkable. The relativistic PSS is significantly improved,
which comes mainly from the spin-orbit interaction and the
dynamical effect. The spin-orbit interaction always
improves PSS. Whether PSS is improved or destroyed
by the dynamical term depends on the particular doublets
and the deformation. For these doublets close to the
continuum, the contribution of the dynamical term is an
improvement to PSS [Fig. 3(a)], while for those far from
the continuum, the contribution of the dynamical term
becomes destructive to PSS [Figs. 3(b) and 3(d)]. For these
doublets near the continuum developing with β2 away from
the continuum, the contribution of dynamical term evolves
from improvement to destruction [Fig. 3(c)]. These have
explained the reason why PSS becomes better for energy
levels closer to the continuum. Compared with the dynami-
cal effect, the spin-orbit interaction is more sensitive to β2
on the oblate side. That PSS becomes worse with an
increase of jβ2j is mainly due to the weaker spin-orbit
interaction. On the prolate side, PSS is insensitive to
deformation for these doublets with Ω ¼ j [Figs. 3(b)
and 3(d)], and becomes a bit worse with β2 for the doublets
with Ω < j [Fig. 3(c)], which is attributed to the weaker
improvement by the spin-orbit and dynamical terms.
In order to better grasp PSS in deformed nuclei, the

single particle energies for all the pseudospin doublets are
plotted against the deformation β2 ranging from−0.3 to 0.5

in Fig. 4. The figure reveals the following points: (i) the
energy difference between the pseudospin unaligned and
aligned states always remains positive over the range of
deformation considered here; (ii) the pseudospin energy
splitting is more sensitive to β2 on the oblate side than that
on the prolate side; (iii) the pseudospin energy splitting is
smaller for the valence orbits and for the partners just below
the Fermi surface. The systematics have been explained
well in the preceding analysis.
In summary, we apply the similarity renormalization

group theory to transform a general Dirac Hamiltonian
into diagonal form. The diagonal elements become
Schrödinger-like operators consisting of a nonrelativistic
term, a spin-orbit term, a dynamic term, a relativistic
modification of kinetic energy, and a Darwin term, which
are very useful for exploring the symmetries hidden in the
Dirac Hamiltonian for any deformed system. As an
example, we have probed the relativistic symmetries for
an axially deformed nucleus. By comparing the contribu-
tions of every term to the single particle energies and their
correlations with the deformation, we have found that
the spin-orbit and dynamical terms play key roles in SS
and PSS. The spin energy splitting comes almost entirely
from the contribution of the spin-orbit term for prolate
nuclei. The extent of this splitting depends on the defor-
mation. Especially for these doublets with Ω ¼ j, the
spin energy splitting increases with increasing deformation.

FIG. 3 (color online). Same as Fig. 2, but for pseudospin energy
splitting.

FIG. 4 (color online). Single particle levels for all pseudospin
doublets in the nucleus 154Dy as a function of the quadrupole
deformation parameter β2.
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The pseudospin energy splitting is dominated by the
nonrelativistic term, the spin-orbit term, and the dynamical
term. The energy splitting from the nonrelativistic term is
the most serious. The relativistic PSS is significantly
improved, which comes mainly from the spin-orbit inter-
action and the dynamical effect. The spin-orbit interaction
always plays a role in favor of PSS, while the dynamical
effect depends on the deformation and the particular
doublets. When the energy levels develop with the defor-
mation or the quantum numbers of the states toward the
continuum, the contribution of the dynamical term evolves
from destruction to improvement. This cause of better PSS
for the levels closer to the continuum has been disclosed
and the systematics of PSS associated with the deformation
has been clarified.
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