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We use a hybrid strategy to obtain anharmonic frequency shifts and lifetimes of phonon quasiparticles
from first principles molecular dynamics simulations in modest size supercells. This approach is effective
irrespective of crystal structure complexity and facilitates calculation of full anharmonic phonon
dispersions, as long as phonon quasiparticles are well defined. We validate this approach to obtain
anharmonic effects with calculations in MgSiO3 perovskite, the major Earth forming mineral phase. First,
we reproduce irregular thermal frequency shifts of well characterized Raman modes. Second, we combine
the phonon gas model (PGM) with quasiparticle frequencies and reproduce free energies obtained using
thermodynamic integration. Combining thoroughly sampled quasiparticle dispersions with the PGM we
then obtain first-principles anharmonic free energy in the thermodynamic limit (N → ∞).
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Thermodynamics and thermoelastic properties of min-
erals are of crucial importance in geophysics, providing
the basis for large scale geodynamic simulations [1] and
mineralogical interpretations of seismological data [2].
Because experiments at pressures and temperatures of
Earth’s interior are challenging and often involve large
uncertainties, theoretical calculations of these properties
are particularly valuable [3]. A paradigm for computing
thermal properties of crystalline materials is the phonon
gas model (PGM) [4–7] which uses the phonon spectrum
to obtain vibrational entropy and other thermodynamic
quantities. The PGM works well in general, even for
strongly anharmonic systems insofar as phonon quasi-
particles exist, i.e., have well defined frequencies and
lifetimes [5]. For nearly harmonic systems, a simplifica-
tion can be made by assuming phonon frequencies have
no intrinsic temperature dependence and depend on
volume only. This so-called quasiharmonic approximation
(QHA) [8,9] combined with harmonic phonon spectra
determined by first principles [10] has been successfully
applied to a large variety of Earth minerals, including
MgSiO3-perovskite (MgPv) [11–13] the most abundant
phase of the Earth’s mantle. Despite this success, intrinsic
anharmonic effects have been identified in the Raman
spectrum of MgPv at ambient pressure [14–16], in the
olivine to wadsleyite transition boundary [3]—the cause
of the major 410 km seismic discontinuity—and in the
high temperature stabilization of other mantle phases,
e.g., cubic CaSiO3-perovskite (CaPv) [17] and Mg-
orthoenstatite [18]. Therefore, there is a clear need to
advance calculations of anharmonic phonon spectra and
free energy for mineral physics applications. First prin-
ciples anharmonic phonon calculations so far have
focused on relatively simple crystal structures [19–23].
The complexity of Earth forming silicates motivates
further advances in this area.

In this Letter, we use a hybrid scheme that combines first
principles molecular dynamics (MD) and harmonic phonon
calculations to characterize phonon quasiparticles and
compute anharmonic free energies. We obtain intrinsic
temperature frequency shifts and lifetimes of all modes
sampled in the MD simulation by analyzing power spectra
of mode-projected velocity-autocorrelation functions
(VAF). This scheme is applicable not only to weakly
anharmonic systems such as MgPv [13], but also to
strongly anharmonic systems, such as cubic CaPv
[17,24], where some harmonic phonons have imaginary
frequencies at ambient conditions. Crystal structure com-
plexity poses no limitations to this scheme.
The usual VAF for crystalline systems is defined as [25]

hVqð0ÞVqðtÞi ¼ limτ→∞
1

τ

Z
τ

0

Vqðt0ÞVqðt0 þ tÞdt0; (1)

where q are Brillouin zone wave vectors of the primitive
cell sampled in the MD simulation, VqðtÞ ¼P

N
i¼1 VðtÞ · eiq·Ri is the q-projected velocity, and Ri is

the atomic coordinate of atom i in the supercell. VðtÞ ¼
fv1ðtÞ

ffiffiffiffiffiffiffi
M1

p
;…; vNðtÞ

ffiffiffiffiffiffiffiffi
MN

p g with 3N components is the
weighted velocity and viðtÞði ¼ 1;…; NÞ are atomic veloc-
ities produced by MD simulations with N atoms per
supercell. Its power spectrum,

GqðωÞ ¼
Z

∞

0

hVqð0ÞVqðtÞieiωtdt; (2)

characterizes the collective dynamics of modes with wave
vector q, including anharmonic effects. Simple crystals
have only few nonequivalent modes with widely different
frequencies well separated in GqðωÞ [25]. Analysis of
GqðωÞcan offer well defined frequencies and linewidths of
modes with the same q. This approach has been
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successfully used to compute phonon lifetimes and the
thermal conductivity of MgO [20], a simple mineral with
the rock-salt structure. However, complex crystals have
numerous phonon modes with similar frequencies. Their
individual spectra overlap and cannot be resolved inGqðωÞ.
This issue can be resolved by calculating separately the

power spectra of individual modes with wave vector q and
polarization branch s (3N in total),

Gq;sðωÞ ¼
Z

∞

0

hVq;sð0ÞVq;sðtÞieiωtdt; (3)

where

Vq;sðtÞ ¼
XN
i¼1

VðtÞ expð−iq ·RiÞ · êq;s; (4)

with êq;s being the polarization vector of normal mode
(q; s) of the static crystal in the equilibrium state. This
strategy was used in conjunction with modified embedded
atom model potentials to investigate the vibrational density
of state (VDOS) of silicon nanoparticles and correlate it
with the bulk VDOS [26]. The (q,s)-projected VAF,
hVq;sð0ÞVq;sðtÞi, can also be used to investigate anhar-
monic effects since it describes the dynamics of mode (q, s)
interacting with other modes sampled in the MD simu-
lation. For a well-defined phonon quasiparticle,
hVq;sð0ÞVq;sðtÞi displays oscillatory decaying behavior
that can be described by a renormalized temperature
dependent phonon frequency ~ωq;s and a linewidth Γq;s
obeying the following condition: jΔωq;s − iΓq;sj ≪ ωq;s
[5,6,27], where Δωq;s ¼ ~ωq;s − ωq;s, with ωq;s being the
harmonic frequency. The power spectrum of a well defined
phonon quasiparticle Gq;sðωÞ should have a Lorentzian-
type line shape with a phonon linewidth equal to approx-
imately 1=2τq;s [5,6,27], τq;sbeing the (q, s)-mode lifetime.
We carried out Born-Oppenheimer molecular dynamics

(BOMD) simulations [28,29] on a 2 × 2 × 2 supercell of
MgPv containing 160 atoms at the zero-pressure equilib-
rium volume for a series of temperatures from 100 to
1500 K. The harmonic normal modes were obtained using
density functional perturbation theory (DFPT) [10] (see the
Supplemental Material [30] for simulation details). The
power spectrum GqðωÞ of MgPv at 700 K displays a single
peak between 320 and 350 cm−1 [Fig. 1(a)], which is in
fact the superposition of three individual modes represented
by Gq;sðωÞ’s [Fig. 1(b)]. Therefore, analysis of Gq;sðωÞ
allows unequivocal identification of ~ωq;s and Γq;s for each
individual mode. Alternatively, one can obtain these
quantities by fitting an exponentially decaying cosine
function to the (q; s)-projected VAF (see the
Supplemental Material [30]). For example, Δωq;sfor these
modes are 6.1, −1.4, and 3.3 cm−1, while their linewidths
are 7.4, 8.3, and 7.7 cm−1, respectively. These phonon
quasiparticles are well defined according to the criterion
indicated above [5,6,27].

MgPv is aweaklyanharmonic systematmantle conditions
[11–13], but anharmonic effects have been well demon-
strated experimentally [14–16] at ambient pressure below
700 K for some Raman-active modes. At constant volume,
the intrinsic thermal shifts of these modes Δωq;s exhibit
diverse behaviors that can be classified as Δωq;s>0,
Δωq;s < 0, and Δωq;s≈0 [Figs. 2(a)–2(c)]. The linewidths
of these modes Γq;s display strong temperature depen-
dences, i.e., increase monotonically with temperature indi-
cating that phonons, as expected, decay faster at higher
temperature [Figs. 2(g)–2(i)]. Below 700 K, bothΔωq;s and
Γq;s vary linearly with temperature, a behavior that can be
captured by lowest order many-body perturbation theory
(MBPT) [31,32]. Above 700 K such linear dependence no
longer holds for those modes displaying the strong anhar-
monic behavior [Figs. 2(a) and 2(g)]. Therefore, this strategy
captures higher order anharmonic effects that cannot be
quantified by MBPT.
Experimental validation of these results is important to

establish this method as a legitimate approach to obtaining
phonon quasiparticle properties and anharmonic effects on
thermal properties. However, before comparing these
results obtained at constant volume with data collected
at constant pressure [14–16], we must correct for extrinsic
frequency shifts caused by thermal expansion. At 0 GPa
these shifts can be expressed as (see the Supplemental
Material [30])

FIG 1 (color online). (a) Power spectrum Gq of Mg-Pv (red
solid line) calculated from a BOMD run at 700 K in a supercell
containing 160 atoms. (q ¼ 0) in

P
s Gq;s (blue dashed line)

correspond to modes with frequencies (harmonic frequencies)
329 cm−1 (323 cm−1), 333 cm−1 (334 cm−1), and 343 cm−1
(340 cm−1). (b) Mode-projected power spectraGq;s of these
modes.

P
s Gq;sresembles Gq in the shaded area.
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Δωq;sðTÞjP¼0 ¼ Δωq;sðTÞjV¼Veq

þ ωq;s½expð−γq;sᾱTÞ − 1�; (5)

where ᾱ is the averaged thermal expansion coefficient,
ᾱðTÞ ¼ 1=T

R
T
0 αðT 0ÞdT 0, α is the thermal expansion coef-

ficient obtained with the QHA, and γq;s is the mode
Grüneisen parameter obtained with DFPT [10]. Updated
frequency shifts at 0 GPa are shown in Figs. 2(d)–2(f).
Table I shows a quantitative comparison of our results

with experimental data [14] for γq;s and for the intrinsic
shift, λq;s ¼ ð∂ ln ~ωq;s=∂TÞV (see the Supplemental
Material [30] for an uncertainty analysis of experimental
λq;s). In overall, our results reproduce very well the
temperature dependent behavior of the Raman frequencies
below 700 K [14–16]: (i) with increasing temperature
Δωq;s jP¼0 increases for the 255 cm−1 mode, stays nearly
constant for the 245 cm−1 mode [Fig. 2(d)], and decreases
for the other modes [Figs. 2(e) and 2(f)], as seen exper-
imentally; (ii) the strongly anharmonic modes (245 and
255 cm−1) have large positive λq;s while the other four
weakly anharmonic modes have considerably smaller
negative λq;s’s; (iii) within uncertainties, there is very good
agreement between predicted and measure intrinsic shifts
(λq;s). The agreement is more obvious for the strongly
anharmonic modes, but differences between measured and
calculated λq;s’s are comparable for all these modes. These
results also shed light on the origin of the frequency shifts.
Usually, ∂ ln ~ωq;s=∂TjP < 0 because of the thermal expan-
sion effect. Here we see that this justification applies only to
the 384 and 508 cm−1 modes [see Figs. 2(c) and 2(f)].
Negative shifts displayed by the 283 and 395 cm−1 modes
are caused by combined effects of intrinsic anharmonicity
and thermal expansion [see Figs. 2(b) and 2(e)].

The consistency between calculated and measured
anharmonic effects validates this method and indicates
that phonon-phonon interaction is sufficiently well
accounted for in MD simulations using the 160-atom
supercell. While this cell size seems sufficient to calculate
renormalized phonon frequencies (see the Supplemental
Material [30]), the small number of q vectors sampled in
the BOMD supercell is not sufficient to converge calcu-
lations of thermodynamics properties, e.g., thermal expan-
sivity or phase boundaries [3]. Free energy calculations
with useful accuracy must not only use accurate ~ωq;s’s but
also sample them over a relatively large number of q points
in the Brillouin zone corresponding to MD simulations
using ≈104 to 105 atom supercells. Using BOMD, this is
currently beyond the capability of direct free energy
methods, such as thermodynamic integration (TI) [33].
However, large q sampling is possible if full anharmonic
dispersions are available. The success of the QHA depends
to a great extent on this thoroughly sampled Fourier
interpolated phonon dispersions. Here we obtain full
renormalized phonon dispersions from these calculated
values of ~ωq;susing a similar interpolation scheme.
Introducing the renormalized “eigenvalue” matrix Λq

containing f ~ω2
q;1; ~ω

2
q;2;…; ~ω2

q;3Ng in the diagonal, and the
matrix of harmonic eigenvectors, ½êq� ¼ fê1;q;…; ê3N;qg,
we define an effective dynamical matrix,

~DðqÞ ¼ ½eq�Λq½eq�þ: (6)

~DðqÞ shares identical eigenvectors with the harmonic
matrix DðqÞ, but has different eigenvalues. Therefore,
anharmonic interactions are retained in the effective force
constant matrix ~ΦðRÞ obtained by Fourier transforming
~DðqÞ. As higher order interactions are usually shorter
ranged compared to the harmonic ones, the calculation

FIG 2 (color online). (a)–(c) show the
temperature dependent frequency shifts
at constant volumeΔωq;sjVðP¼0Þ of MgPv
modes with positive, negative, and nearly
zero shifts, respectively. (d)–(f) show
frequency shifts at zero pressure
Δωq;sjP¼0 given by Eq. (6) (see the
Supplemental Material [30] for details).
The temperature dependence of these
Raman-active modes has been experi-
mentally measured [14–16] at ambient
pressure. See Table I for comparison.
(g)–(i) show temperature dependent line-
widths Γq;s at constant volume for the
same modes, respectively. The volume is
equal to that of a static lattice with (LDA)
pressure equal to 0 GPa. Solid lines
indicate linear behavior, Δωq;s ≈ αq;sT
and Γq;s ≈ βq;sT, for T < 700 K. Error
bars represent uncertainties originating in
BOMD runs.
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of ~ΦðRÞ does not require BOMD supercells larger than
those required for obtaining the harmonic ΦðRÞ.
Diagonalization of

~Dðq0Þ ¼
X
R

~ΦðRÞ expð−iq0RÞ (7)

then gives ~ωq0;sfor any q0 in the Brillouin zone.
Renormalized phonon dispersions of MgPv obtained at

T ¼ 1; 500 K are compared in Fig. 3(a) with phonon dis-
persions calculated using DFPT [10]. Frequencies obtained
from a 160-atom BOMD simulation are compatible with
thosefromDFPTforallhighsymmetryzoneedgemodes(see
the Supplemental Material [30] and Fig. E2a for details).
Anharmonic shifts arevery discernible in the 1500Kphonon
dispersions and in the vibrational density of states (VDOS)
[Fig. 3(b)] (for comparison see Fig. E2 in the Supplemental
Material [30]). These anharmonic VDOS are invaluable for
free energy calculations at very high temperatures when
combinedwith PGM[4–7],where the entropy is analytically
obtained from quasiparticle frequencies ~ωq;s[9]:

S ¼ kb
X
q;s

�
ℏ ~ωq;s=kbT

expðℏ ~ωq;s=kbTÞ − 1

− ln

�
1 − exp

�
− ℏ ~ωq;s

kbT

���
: (8)

The free energy FðV; TÞ is then obtained by numerically
integrating S over T (see the Supplemental Material [30]).
Figure 4 shows a comparison between free energies com-
putedusing thePGMondifferentqgrids andbyTI [33]using
results for the 2 × 2 × 2 BOMD supercell. Results obtained
with the PGMandwith theTI approach are equivalent for the
same 2 × 2 × 2 q grid. However, there is a noticeable
difference (∼2% at 1500 K) for PGM results obtained on a
densely interpolated q grid (10 × 10 × 8). Such a difference
is very significant for determining phase boundaries [34].
Formally, TI is an exact method for a given MD supercell.
However, conducting converged TI using BOMD on a
supercell sufficiently large (10 × 10 × 8 or 16 000 atoms
for MgPv) is beyond current capability. Therefore, this

strategy opens the door to an alternative route to achieving
convergence in phase space sampling for accurate first-
principles anharmonic free energy calculations.
In summary, we have overcome several obstacles in first

principles computations of phonon quasiparticle properties
and anharmonic free energy of crystalline systems. We
reproduced irregular temperature induced frequency shifts
[14–16] observed in the Raman spectrum of a weakly
anharmonic and complex system,PbnmMgSiO3 perovskite.
As long as phonon quasiparticles exist, i.e., as long as

FIG 3 (color online). (a) Anharmonic phonon dispersions (blue
solid lines) of Mg-Pv obtained at T ¼ 1; 500 K. Harmonic
phonon dispersions calculated using DFPT at the same volume
(red dashed lines) are shown for comparison. (b) Temperature
dependent VDOS of Mg-Pv obtained on a 10 × 10 × 8 q-point
grid using DFPT (red dashed line) and at 1500 K (blue solid line),
both at the same volume. The thermal pressure is ∼10 GPa. (See
the Supplemental Material [30] for more detailed comparisons
and simulation details.)

TABLE I. Comparison between measured [14] and calculated phonon frequencies ~ωq;s, mode Grüneisen parameter γq;s, and intrinsic
mode anharmonicity parameters λq;s for Raman active modes of MgPv at ambient conditions. Harmonic frequencies ωq;s in parenthesis
and γq;s are DFPT results [10] in italic. The detailed evaluation of experimental uncertainties in λq;scan be found in the Supplemental
Material [30].

~ωq;sðωq;sÞðcm−1Þ γq;s λq;sð10−5 K−1Þ
Symmetry This Letter Experiment [14] This Letter Experiment [14] This Letter Experiment [14]

Ag 250 (245) 252 2.01 2.21 5.91� 0.23 6.25� 1.66
B2g 263 (255) 257 2.40 2.12 10.47� 0.06 9.20� 3.69
Ag 281 (283) 281 1.38 1.26 −2.58� 0.22 −0.65� 0.98
Ag 393 (395) 390 1.38 1.39 −1.73� 0.04 −0.85� 1.25
Ag 384 (384) 379 0.97 1.85 −0.37� 0.02 −0.28� 0.96
B3g 507 (508) 501 1.62 1.71 −0.45� 0.03 −0.42� 0.69
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anharmonicity does not mix harmonic modes, and the
power spectra of all modes have well defined single peaks,
one can also obtain anharmonic dispersions over the entire
Brillouin zone. Combination of these thoroughly sampled
quasiparticledispersionswith thephonongasmodelcanoffer
first-principlesfreeenergyandthermodynamicsproperties in
the thermodynamic limit (N → ∞) at temperatures beyond
the limit of validity of the QHA. This is especially important
for calculations of thermal expansivity and phase boundaries
[1,3,34], key properties in geodynamics simulations.
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