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Predicted Very Large Thermoelectric Effect in Ferromagnet-Superconductor Junctions
in the Presence of a Spin-Splitting Magnetic Field
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We show that a huge thermoelectric effect can be observed by contacting a superconductor whose
density of states is spin split by a Zeeman field with a ferromagnet with a nonzero polarization. The
resulting thermopower exceeds kg/e by a large factor, and the thermoelectric figure of merit ZT can far
exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized
currents can be generated in the superconductor by applying a temperature bias.
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Thermoelectric effects, electric potentials generated by
temperature gradients and vice versa, are intensely studied
because of their possible use in converting the waste heat
from various processes to useful energy. The conversion
efficiency n = W/ Q, the ratio of output power W to the rate
of thermal energy consumed Q, in thermoelectric devices
however, typically falls short of the theoretical Carnot limit
and is low compared to other heat engines, which has
motivated an extensive search for better materials. [1]

In electronic conductors a major contributor to thermo-
electricity is breaking of the symmetry between positive
and negative-energy charge carriers (electrons and holes,
respectively) [2]. Within Sommerfeld expansion, this is
described by the Mott relation [3], which predicts thermo-
electric effects of the order ~kzT/E,, where T is the
temperature and E; a microscopic energy scale describing
the energy dependence in the transport. This is usually a
large atomic energy scale (in metals, the Fermi energy),
so that Ey > kzT even at room temperature and these
effects are often weak. Larger electron-hole asymmetries
are, however, attainable in semiconductors, as the chemical
potential can be tuned close to the band edges, where the
density of states varies rapidly [1,4].

The situation in superconductors is superficially similar
to semiconductors. The quasiparticle transport is naturally
strongly energy dependent due to the presence of the
energy gap A, which can be significantly smaller than
atomic energy scales. However, the chemical potential is
not tunable in the same sense as in semiconductors, as
charge neutrality dictates that electron-hole symmetry
around the chemical potential is preserved. This implies
that the thermoelectric effects in superconductors are often
even weaker than in the corresponding normal state, in
addition to being masked by supercurrents [5,6].
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We show in this Letter that this problem can be overcome
in a conventional superconductor by applying a spin-
splitting field A. It shifts the energies of electrons with
parallel and antiparallel spin orientations to opposite direc-
tions [7]. This breaks the electron-hole symmetry for each
spin separately, but conserves charge neutrality, as the total
density of states remains electron-hole symmetric. In this
situation, thermoelectric effects can be obtained by coupling
the superconductor to a spin-polarized system. The same
type of a mechanism was found to be present in proximity
coupled multiterminal superconductor-ferromagnet devices
within the model of spin-active interfaces [8].

We propose that this effect can be realized in structures
such as shown schematically in Fig. 1: There, a ferromag-
net with a relatively large spin polarization is connected
to a thin-film superconductor via a tunnel contact.
Moreover, we assume the presence of a finite exchange
field 4 inside the superconductor. Such an exchange field
can result from a Zeeman effect due to an applied magnetic
field [Fig. 1(b)] [7,9], or from a magnetic proximity effect
with either a ferromagnetic insulator [10—13] or with a thin
ferromagnetic metallic layer [14,15] placed directly below
the superconductor [Fig. 1(a)]. For simplicity, we assume
this exchange field to be collinear with the magnetization
inside the ferromagnet.

A standard tunneling Hamiltonian calculation [16] yields
for spin-o electrons from the ferromagnet the charge and
heat currents

=2 / ™ dEN,(E)[f £(E) — f5(E)]. (1)
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FIG. 1 (color online). Top: schematic systems studied in this
work. In both of them a ferromagnet (F) is coupled via a tunneling
contact to a thin-film superconductor (S), whose tunneling
density of states is modified by an exchange field. In (a) the
exchange field is induced by the proximity of a ferromagnetic
insulator (FI), whereas in (b) it is 1nduced by the Zeeman energy
due to an applied magnetic field B parallel with the easy axis of
the ferromagnet. Bottom: tunneling densities of states for spin
1/1, averaged over spin (N,), and the difference of them (N,)
obtained for an exchange field h = A/2.

Here N, (E) = Ng(E £ h) is the tunneling density of
states (DOS) for spin 1/, particles divided by the normal-

state density of states at Fermi energy, [7] Ng(E) =
|E|/VE?— A’9(|[E| — A) is the BCS DOS, G, is the
conductance through the junction for spin ¢ particles in
the normal state, and f/s(E) are the (Fermi) distribution
functions of electrons inside the ferromagnet and the
superconductor, respectively. We disregard the energy
dependence of the density of states inside the ferromagnet
as well as the tiny electron-hole asymmetry possibly exis-
ting in the superconductor. Moreover, we fix the electro-
chemical potential of the superconductor to zero and
describe the applied voltage via the potential up = —eV
in the ferromagnet. Note that supercurrent cannot flow into
the ferromagnet, which prevents it from short-circuiting
this potential difference.

The spin-dependent densities of states N,,(E) are plotted
in Fig. 1(c) in the presence of a nonzero exchange field. We
can see that they break the symmetry with respect to
positive and negative energies for each spin. This symmetry
breaking allows for the creation of a large spin-resolved
thermoelectric effect, which can be converted to a spin-
averaged effect via the spin filtering provided by the
polarization P = (G; — G|)/(G4 + G| ). This can be seen
better by introducing the charge and spin currents / =
Iy + 1, and Ig = I — I as well as the heat and spin heat

currents Q:QT—I—Q¢ and QS:QT—Qi along with

1=9r dE[ PN*’} fe—fs Qo
e J o 2
Gr

Iy = | dE{PN0+ :|[fF_fS] (2b)

. G 0o PN
Q_e_zT/oodE(E_,“F) {N0+TZ] fr—fsl, (20

Qs:%/ dE(E — ﬂF)|:PNO+ ][fF_fS] (2d)

Here Gy =Gy + G is the conductance of the tunnel
junction that would be measured in the absence of super-
conductivity. The average density of states Ny(E) is
symmetric and the difference N, (E) antisymmetric with
respect to E = 0 as shown in Fig. 1(c). This means that
they will pick up a different symmetry component of the
distribution function difference in Eqs. (2) and eventually
lead to a thermoelectric effect.

In order to grasp the size of the thermoelectric effects
we assume either a small voltage V or a small temperature
difference AT/T =2(T; —Tg)/(T; + Tg) across the
junctions and find the currents in Eqs. (2) up to linear
order in V and AT/T. They can be written in a compact
way, for the charge and heat currents

I G Pa 1%
(Q) B (Pa G,hT> <AT/T>’ 3)

and for the spin and spin heat currents

1 PG a 1%
(QSS) - ( a PGthT) <AT/T>' @

These response matrices are expressed in terms of three

coefficients,
G—GT/:dE%, (5a)
G = % /: aE 4ka22cIZ(s)r(§(>2k§T) ’ (5b)
Gy [ EN,(E) (50)

T 2 o 4kgTcosh®(t7)

Besides the thermoelectric effect that is detailed below,
we can already draw some important conclusions based
on Egs. (3)—(5). (i) The matrices in Eqgs. (3)-(4) obey the
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Onsager reciprocal relations [8,17,18], which for a generic
thermoelectric response_matrix L describing response
in _a magnetic field B for magnetization 7i reads
L(B,nt) = LT(—B, —m). Moreover, the coefficients sat-
isfy a thermodynamic stability condition a?/(TGGy,) < 1,
due to Cauchy-Schwartz inequality. (ii) The thermoelectric
effects vanish when N, =0, ie., when either no
exchange field is applied (A =0) or when A =0.
Since N.(—h) = —N_(h), inverting the exchange field
changes the sign of the thermoelectric coefficients. It is
important to emphasize that in order to get a nonzero
spin-averaged thermoelectric effect, the spin polarization
P of the interface needs to be nonvanishing. (iii) According
to Eq. (4), a finite spin-polarized current can flow if
there is a temperature difference across the junction. This
effect is the longitudinal analog to the spin-Seebeck effect
observed in metallic magnets [19,20], and can here be
found in a spin-splitting field even for a zero spin
polarization P = 0.

The response coefficients from Eqgs. (5) are plotted as a
function of exchange field # in Fig. 2. We note that the
thermoelectric coefficient @ increases linearly for small £, and
reaches a maximum for 4 < A, (here, A, is the super-
conducting order parameter at 7 = 0 and & = 0), and finally
drops to zero when superconductivity is destroyed by A.
Thermal conductance Gy, has a similar nonmonotonic behav-
ior, whereas the conductance G increases monotonically
toward its normal-state value G7. In the low temperature
limitkzT < A — |k, the coefficients can be approximated by

G ~ GV 2xA cosh(h)e 2, (6a)

-
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FIG. 2 (color online). Thermoelectric coefficients vs exchange
field hat kyT /Ay = 0.1 (black lines), 0.2 (blue lines) and 0.3 (red
lines). From top left to bottom right: conductance, heat conduct-
ance, thermoelectric coefficient, and thermopower. The solid
lines are numerical integrals of Egs. (5), the dashed lines are the
approximations in Egs. (6)),(8). The curves have been calculated
for I' = 107%A,. A, is the superconducting order parameter at
T=0and h=0.

kpGrA PP L.
G m 22 | T e=Beh(A— )2 + e (A +R)?], (6b)
e 2A
Gr /=% _iin s -
a~—\V2rxAe 2[A sinh(h) — h cosh(h)], (6¢)
e

where A = A/(kgT) and h = h/(kgT). For h =0, the
expressions reduce to the standard results for the normal
metal-insulator-superconductor (NIS) charge and heat con-
ductance G and Gy,, [21,22] whereas a vanishes.

Instead of the thermally induced current, the typical
thermoelectric observable is the thermopower or the
Seebeck coefficient S = —Pa/(GT), defined as the voltage
V observed due to a temperature difference AT after opening
the circuit such that / = 0. It can be obtained from Egs. (5).
The Seebeck coefficient for our ferromagnet-insulator-
superconductor (FIS) junction is plotted in the lower right
panel of Fig. 2. The qualitative behavior is close to that of a,
but it is quantitatively changed by the /4 dependence of G.

In the low temperature limit, S can be obtained from
Egs. (6), S~—(PA/eT)[tanh(h) — h/A]. Thus, for low
temperatures the thermopower is maximized for
h = kpTarcosh(v/A), where

S kBP A h A @)
oy N — — — — arcos P — .
max e kBT kBT

It can hence greatly exceed kg/e and seems to diverge
towards low temperatures as 1/7. In practice this divergence
is cut off by additional contributions beyond the standard
BCS tunnel formula. These are often described via the
phenomenological “broadening” parameter I" [23]. Practical
reasons for the occurrence of an effectively nonzero I' are
the fluctuations in the electromagnetic environment [24],
the presence of Andreev reflection [25,26], or the inverse
proximity effect from the ferromagnet [27,28]. The main
effect of the broadening parameter for the thermopower is to
induce a finite density of states inside the gap that in turn
leads to a correction of the charge conductance (6) of the
order 6G = (I'/A)Gy (valid for I' < kzT < A). The cor-
rections for the other coefficients are less relevant. Within
this limit we get, for the thermopower,

A h cosh (,(BLT) — A sinh (kBiT)

S=P 8)

€T o/ (k1) 5T+ A cosh (kBLT)

The result for S is shown in the lower right panel of Fig. 2.

The power conversion ability of thermoelectric devices
is usually characterized by a dimensionless figure of merit
ZT, which can here be related to the junction parameters
by ZT = S>GT/Gy,, where Gy, is the thermal conductance
at zero current [29]. At linear response, AT <« T, this
determines the efficiency at maximum output power,
n=ncaZT/(ZT +2), where ncy =1—/Teqa/Thor 18
the Curzon-Ahlborn efficiency [30]. The best known
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thermoelectric bulk materials have ZT <2, but better
efficiencies are achievable in nanostructures [1].

Assuming that the thermal conductance is dominated by
the electronic contribution, we find at kz7T << A — |A|

P2

ZT ©)

A? ’

B
1 P*+ [h cosh(k;—’r)—A sinh(,{ELT)]2

which is shown and compared to numerical results in
Fig. 3. For kzT < h, we find ZT = P?/(1 — P?). For
P — 1 (half-metal injector), ZT approaches infinity, and
the efficiency approaches theoretical upper bounds. From a
practical point of view the main challenge in achieving
large values for ZT is the fabrication of barriers with large
spin-polarization P.

Let us characterize the efficiency at larger temperature
differences. Figure 4 shows the maximum extractable
power as a function of the temperature difference, together
with the conversion efficiency 7. Fora 1 k€ tunnel junction
to aluminum, the maximum power in this figure corre-
sponds to W =~ 1.5 pW. The efficiency can be rather high,
n = 0.7, also when the extracted power is large.

Other known mechanisms in superconductors generating
thermoelectric signals in addition to the normal-state
mechanisms include condensate flow [31] and electron-
hole symmetry breaking by magnetic impurities [32].
Thermopower significantly larger than the normal-state
effect appears also in hybrid N/S systems. [33]

The cooling effect found in NIS junctions in the non-
linear regime [34,35] is also similar to the effect described
here, if one substitutes the exchange field with a finite
voltage V ~ A/e. Indeed, the extracted power found above
is comparable to the maximum cooling power of a NIS

4 -°
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FIG. 3 (color online). Figure of merit ZT as a

function of exchange field at k37 /Ay = 0.1 (black lines), 0.2
(blue lines), and 0.3 (red lines), and P = 0.9. The solid lines
are the exact results and the dashed lines the results obtained
from Eq. (9). The dotted line indicates the zero-temperature
limit ZT = P?/(1 — P?).

junction. NIS junctions, however, cannot be used for power
conversion, as their cooling power Qyg 1S a symmetric
function of the bias voltage. The effect of ferromagnetism
on NIS cooling was also discussed earlier, [36—38] but in
those works the exchange field was introduced in order to
suppress the Joule heating due to the Andreev current and
did not affect the density of the states of the super-
conductor. According to our results, the induced exchange
field in the superconductor may lead to a larger cooling
efficiency than in NIS junctions.

The assumption about equilibrium electron distributions
in the above model holds if the resistance G7' is large
compared to the quasiparticle boundary resistance
R, ~ pntin/A, [39] which depends on the inelastic charge
and spin relaxation length ¢;, (A is the junction area and
py the normal-state resistivity). In the opposite limit, the
kinetics of injection and relaxation of quasiparticles in the
superconductor (and the ferromagnet) need to be modeled
[40,41] taking the split density of states into account, which
can alter the quantitative details.

We also note that in the geometry of Fig. 1(b), where the
Zeeman field is induced by a magnetic field, the orbital
effect of the magnetic field will also influence the form of
the density of states and for large fields it will eventually
lead to a destruction of superconductivity. For simplicity,
we have disregarded this effect in the above calculation. In
practice, to minimize this effect, the magnetic field should
be applied preferably in the longitudinal direction of the
wire [42], as depicted in Fig. 1(b).

Summarizing, we have shown that a junction between
a conventional superconductor in the presence of an
exchange field and a ferromagnet with polarization P
exhibits huge thermoelectric effects. The thermopower
diverges at low temperatures in the absence of limiting
effects, yielding a figure of merit Z7 =~ P?/(1 — P?) and
heat engine efficiencies close to theoretical upper bounds.
Moreover, even in the case of P = 0 our model predicts

1.0 A 1 1 1 1 1 1 1 1 0.05
08} 0.04 _
oy <
2 06K " 0.03 S
Q . =
£ 04 . 0021$
\ "‘ ..' NS
0.2 & 0.01
0.0 S 0
0.0 0.1 02 03 0.4 05 0.6 0.7 0.8 0.9

kB Tr/Ag

FIG. 4 (color online). Maximum power W = maxy[—IV]
generated by the FIS junction from a temperature difference
Tr—Tg (solid line), and the corresponding heat engine
efficiency 5 (dashed line). We fix P = 1.0, kzTs = 0.24,
h=0.64A, and I =107A, The linear-response result
n=ncaZT/(ZT +2) for ZT = 4.04 and the Carnot efficiencies
Ne = 1 — Tegia/ Thot are also shown (dotted lines).
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finite spin currents in the presence of a temperature
gradient, provided there is a spin-splitting of the density
of states. These mechanisms in principle can work also in
semiconductors without requiring doping which typically
deteriorates the thermoelectric effects.
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