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Based on the Landauer formalism, we demonstrate that the thermal conductance due to the propagation
of Zenneck surface-phonon polaritons along a polar nanowire is independent of the material characteristics
and is given by π2k2BT=3h. The giant propagation length of these energy carriers establishes that this
quantization holds not only for a temperature much smaller than 1 K, as is the case for electrons and
phonons, but also for temperatures comparable to room temperature, which can significantly facilitate its
observation and application in the thermal management of nanoscale electronics and photonics.
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Thermal transport in one-dimensional (1D) systems at
low temperature has attracted considerable interest over the
past few years, due to the striking quantization of their
conductance in integer multiples of a universal quantum.
For heat conduction, this quantum due to electrons is equal
to that of phonons, and its value is π2k2BT=3h, where kB and
h are the Boltzmann and Planck constants, respectively, and
T is the temperature [1–5]. Therefore, the minimal amount
of heat conducted by electrons and phonons is the same. This
result has been theoretically described under the Landauer
formalism [6–9] and validated experimentally [10,11].
1D energy transport occurs in the ballistic regime [2,11],

that is, when the mean free path of the energy carriers is
comparable or larger than the material dimensions. Taking
into account that the mean free path of electrons and
phonons is of a few nanometers upward, for a wide variety
of materials at room temperature [12,13], and it increases
as temperature decreases, the 1D transport due to these
energy carriers is usually achieved in nano-sized materials
at very low temperature. For instance, a wire of GaAs with
a square cross section of 502 nm2 holds 1D heat conduction
for temperatures up to 1 K [2]. By contrast, for heat
conduction due to Zenneck surface-phonon polaritons
(Zenneck SPPs), which are evanescent electromagnetic
waves generated by the photon-phonon coupling at the
interface between an absorbing medium and a nonabsorb-
ing one [14–16], the propagation length (mean free path) is
primarily determined by the dielectric permittivity of these
media and not directly by temperature [17]. This indicates
that the 1D heat conduction of Zenneck SPPs is not
necessarily restricted to low temperatures, as is the case
of electrons and phonons. Therefore, if the SPP thermal
conductance is also quantized, this quantization could exist
even at room temperature.

The purpose of this Letter is to theoretically demonstrate
that the thermal conductance due to Zenneck SPPs propa-
gating along a 1D wire is quantized for any temperature
comparable to or smaller than room temperature. Given that
the SPP contribution to heat conduction increases as the
material size reduces [17], the obtained quantization could
be observed in polar nanowires.
Let us consider a wire in thermal contact with two

thermal baths set at the temperatures T1 and T2 ( T1 > T2),
as shown in Fig. 1(a). We first analyze the general 1D heat
conduction along this wire and the results are then applied
for Zenneck SPPs. Assuming that the wire is thin enough to
conduct heat along its axis mainly (1D wire), the heat flux
Q is given by the Landauer formula [7,8]

Q ¼
XN
n¼1

Z
kmax
n

0

dk
2π

ℏωV½fωðT1Þ − fωðT2Þ�τðkÞ; (1)

where k , ω ¼ ωðkÞ and V ¼ ∂ω=∂k are the wave vector,
frequency, and group velocity of the energy carriers
traveling inside the wire, fω is the distribution function
of the energy carriers in the thermal baths, τ is their
transmission probability between the nanowire and thermal
baths, and kmax

n is the largest wave vector at which the
modes of the branch n propagate.
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FIG. 1 (color online). Schematics of (a) the nanowire in thermal
contact with two thermal baths and (b) its circular cross section.
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Considering that the difference of temperature ΔT ¼
T1 − T2 << T ¼ ðT1 þ T2Þ=2, the change of distribution
functions in Eq. (1) reduces to fωðT1Þ − fωðT2Þ ¼
ΔT∂fωðTÞ=∂T . The thermal conductance G ¼ Q=ΔT
of the nanowire is then given by

G ¼ 1

2π

XN
n¼1

Z
ωmax
n

ωmin
n

ℏω
∂fωðTÞ
∂T τðkÞdω: (2)

The parameters ωmin
n and ωmax

n stand for the lowest and
highest frequencies (cutoff frequencies) of each branch n.
Equation (2) shows thatG is independent of all inner details
of the dispersion relation kðωÞ, depending only on its cutoff
frequencies. Assuming that the shape effect at the contacts
between the nanowire and the thermal baths is small
enough to not limit the transmission of energy carriers
along the nanowire, we take τ ¼ 1. This can be currently
achieved with the high control of growth processes pro-
vided by the epitaxial techniques [18]. For Zenneck SPPs,
this assumption is further supported by their very large
propagation length [17], which ensures their transmission
through the wire. The Zenneck SPPs can be thermally
generated by heating up the nanowire, through the left
thermal bath, to excite its polar molecules, which emit an
electric field, as a result of their oscillating electrical
dipoles. This field induces the excitation of neighboring
electrical dipoles, which keep the propagation of the field
(SPP) along the nanowire. To obtain this, the thermal
contact between baths and wire should be efficient [17]. For
energy carriers following the Bose-Einstein statistics, as is
the case of Zenneck SPPs [19], Eq. (2) can be rewritten as

G ¼ k2BT
h

XN
n¼1

Z
Bn=T

An=T

x2ex

ðex − 1Þ2 dx; (3)

where An ¼ ℏωmin
n =kB and Bn ¼ ℏωmax

n =kB. The integral in
Eq. (3) can be calculated analytically and yields

G ¼ k2BT
h

XN
n¼1

½JðAn=TÞ − JðBn=TÞ�; (4)

where

JðxÞ ¼ x2

ex − 1
− 2x ln ð1 − e−xÞ þ 2

X∞
m¼1

e−mx

m2
: (5)

Equation (4) indicates that the thermal conductance is
determined by the relative values of the normalized cutoff
frequencies with respect to temperature. The function JðxÞ
is positive for any x ≥ 0; for a small argument (x ≫ 1), it
reduces to JðxÞ ≈ π2=3 − x, and for a large argument
(x ≫ 1), JðxÞ ≈ ½1þ ðxþ 1Þ2� expð−xÞ [20]. To take into
account the possible presence of modes with a zero lowest
frequency (ωmin

n ¼ 0 ), we define An ¼ 0 for the first N0

modes, and An > 0 for n > N0. Under this assumption,
Eq. (4) takes the form

G ¼ N0G0 þ
k2BT
h

� XN
n¼N0þ1

JðAn=TÞ −
XN
n¼1

JðBn=TÞ
�
;

(6)

where G0 ¼ π2k2BT=3h is the universal quantum of thermal
conductance [2]. The following three limiting cases of
Eq. (6) are of potential interest. (i) For low temperature
(T ≪ An), the function J in both sums of Eq. (6) goes
exponentially to zero and, hence, their contribution is
negligible. Thus, Eq. (6) reduces to G ¼ N0G0, which is
the well-known quantization for phonons and electrons at
low temperature T < 1 K [2,9,11]. (ii) For intermediate
temperatures (An ≪ T ≪ Bn ), JðAn=TÞ ≈ π2=3 − An=T,
JðBn=TÞ → 0 and Eq. (6) reduces to

G ¼ NG0 þ
kB
2π

XN
n¼N0þ1

ωmin
n ; (7)

which depends linearly on the total number of modesN and
the temperature through the quantum of thermal conduct-
ance. Cases (i) and (ii) show that for T ≪ Bn, the thermal
conductance exhibits a linear dependence on temperature.
(iii) For high temperature (T ≫ Bn), Eq. (6) yields G¼G∞,
where

G∞ ¼ kB
2π

�XN
n¼1

ωmax
n − XN

n¼N0þ1

ωmin
n

�
: (8)

Equation (8) establishes that at high temperature, G is
independent of T and G0. Its dependence on the material
dispersion relation appears only through the difference
between the total highest and lowest cutoff frequencies.
Figure 2 shows the thermal conductance G as a function

of the normalized temperature for a nanowire with a single
transmitted mode. Note that G exhibits three regimes of
heat conduction determined by the ratio T=B1, such that its
quantization shows up in the low temperature regime

10-1 100 101

0.1

1

G
/ G

∞

      High
temperature

Intermediate
temperature

G = G∞

T
he

rm
al

 c
on

du
ct

an
ce

,  

Normalized temperature, T/B1
 

G = G0

      Low
temperature

FIG. 2 (color online). Thermal conductance versus temperature
for a nanowire with a single transmitted mode (N ¼ N0 ¼ 1).
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(T ≪ B1). For phonons in a nanowire of GaAs, B1 ≈
2 K [2].
Turning to Zenneck SPPs propagating along a polar wire

with a frequency-dependent permittivity ε1ðωÞ, its sur-
rounding medium is considered to have a frequency-
independent permittivity ε2 > 0, as is the case of air, within
a wide range of frequency. Both media are assumed to be
nonmagnetic (μ0 ¼ 1). By solving the Maxwell equations
under proper boundary conditions for the transverse mag-
netic polarization required for the existence of Zenneck
SPPs [14,19], the following dispersion relation for the wave
vector k ¼ β along the wire axis is obtained [21]

ε1
p1

I0nðp1aÞ
Inðp1aÞ

¼ ε2
p2

K0
nðp2aÞ

Knðp2aÞ
; (9)

where In and Kn are the modified Bessel functions and the
prime indicates the derivative. The parameter n ¼ 1; 2;…
accounts for the contribution of the azimuthal modes to the
electromagnetic field. The radial wave vectors pj for the
medium j ¼ 1, 2 are given by p2

j ¼ β2 − εjk20, where
k0 ¼ ω=c, c being the speed of light in vacuum.
Equation (9) can significantly be simplified for a thin wire
(∣pj∣a << 1), which is of interest in this work to enhance
the SPP propagation along the wire. For nanowires of SiC
or SiO2, this condition is well satisfied for a ≤ 300 nm
[Fig. 1(b)]. In this case, Eq. (9) becomes independent of the
radius a and of the azimuthal mode degree n, as follows
p2
1=ε1 þ p2

2=ε2 ¼ 0. This indicates that the azimuthal
modes does not contribute to the thermal transport through
nanowires. The solution of this symmetric relation for β is

β ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε1ε2=ðε1 þ ε2Þ

p
; (10)

which differs from the dispersion relation of the single
plane interface [16], by just a factor of

ffiffiffi
2

p
, due to the

geometry effect. For a nanowire with complex permittivity
ε1 ¼ εR þ iεI , the real βR ¼ ξþ and imaginary βI ¼ ξ−
parts of β are given by

ξ� ¼ k0
ffiffiffiffiffi
ε2

p
∣ε1 þ ε2∣

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jε1jjε1 þ ε2j � jε1j2 � εRε2

q
; (11)

where it was assumed that εI > 0. This condition guarantees
the absorption of electromagnetic energy by the nanowire, as
is the case of real materials. Irrespective of the particular
complex values of ε1, we note the following. (1) The real
part βR > 0, which indicates that the propagation of Zenneck
SPPs is along the wire axis, from the hot bath to the cold one.
(2) When the frequency tends to zero or infinite, the wire
permittivity and, hence, the square root in Eq. (10) tend to a
frequency-independent value. Consequently, thewave vector
β ∝ k0 → 0 (β ∝ k0 → ∞), that is, βRðω ¼ 0Þ ¼ 0
[βRðω → ∞Þ → ∞]. This establishes that the dispersion
relation of the Zenneck SPPs propagating along the wire
starts at A1 ¼ 0 and ends at B1 → ∞ (N ¼ N0 ¼ 1).

(3) Given that jε1jjε1 þ ε2j > jε1j2 þ εRε2, the imaginary
part βI > 0 and, therefore, the Zenneck SPPs propagate with
a propagation length Λ ¼ 1=2βI [17,19].
According to Eq. (10), the radial wave vectors

inside and outside of the nanowire are p1;2 ¼
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1;2ðε2;1 − ε1;2Þ=ðε1 þ ε2Þ

p
. The real parts of these

wave vectors are positive [ReðpjÞ > 0, j ¼ 1, 2], which
guarantees that the electrical and magnetic fields decays as
they travel away from the nanowire surface. Hence, the
Zenneck SPPs exist for any permittivity ε1 and frequency
ω > 0 [17,22]. Given the existence and propagation of
Zenneck SPPs, Eq. (6) and Fig. 2 show that the SPP thermal
conductance of a polar nanowire is quantized and equals
G0, for any temperature. This value coincides with the one
due to electrons and phonons, but for Zenneck SPPs it not
only holds for very low temperatures (T < 1 K), as is the
case of these energy carriers, but also for any higher
temperature. The SPP contribution (G0) to the quantum
thermal conductance of nanowires at room temperature can
then be more than 2 orders of magnitude higher than the
one of phonons, which was measured experimentally with
high accuracy, at cryogenic temperatures [11]. This size-
able difference could facilitate the observation of G0.
The obtained quantization is now analyzed for two

particular nanowires of SiC and SiO2 surrounded by air,
ε2 ¼ 1. For crystalline materials, as SiC, their permittivity
is described by the harmonic oscillator model [19]

ε1ðωÞ ¼ ε∞

�
1þ ω2

L − ω2
T

ω2
T − ω2 − iΓω

�
; (12)

where ωL and ωT are the longitudinal and transversal
optical frequencies, respectively, Γ is a damping constant,
and ε∞ is the high frequency permittivity. The maximum of
the imaginary part of ε1 occurs at ω ¼ ωT , for ωT ≫ Γ, as
is the case of most crystals [23]. Therefore, these materials
absorb more energy from the electromagnetic field at this
frequency. For SiC, ωL ¼ 182 Trad=s, ωT ¼ 149 Trad=s,
Γ ¼ 0.892 Trad=s, and ε∞ ¼ 6.7 [23].
The dispersion relation and propagation length of

Zenneck SPPs traveling along the nanowire-air interface
are shown in Figs. 3(a) and 3(b), respectively. The curves
for the amorphous SiO2 have been generated using Eq. (10)
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FIG. 3 (color online). (a) Dispersion relation and (b) propaga-
tion length as a function of the frequency, for the nanowires of
SiC and SiO2 surrounded by air (ε2 ¼ 1).

PRL 112, 055901 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 FEBRUARY 2014

055901-3



and the experimental data [17] of its complex permittivity.
Note that for both SiC and SiO2, βR decreases and
approaches the light line, as the frequency decreases.
This indicates a photonlike nature of the Zenneck SPPs.
As the frequency increases, the dispersion curve separates
from the light line and tends to a phononlike behavior.
The dispersion curves cross the light line, as a result of
the change of sign of εR, at the frequency ω ¼ ωL, for SiC.
In contrast to the case of materials with negligible energy
absorption (εI ¼ 0), in the present realistic study (εI ≠ 0),
the propagation of Zenneck SPPs exists here for any wave
vector on both sides of the light line, as reported in the
literature [22]. In the range of frequencies shown in
Fig. 3(a), the propagation length in Fig. 3(b) is well defined
and takes larger (smaller) values at the frequencies where
the absorption of energy is minimum (maximum). In order
to ensure the propagation of the Zenneck SPPs through the
entire nanowire, its length has to be smaller or equal to the
SPP propagation length, which can be as high as 1 cm, as
shown in Fig. 3(b).
The real parts of the radial wave vectors inside and

outside of the nanowire are positive, as shown in Fig. 4(a).
This fact, along with Figs. 3, reveals that the propagation of
Zenneck SPPs starts at ω ¼ 0 and is present in a broad band
of frequencies. This is further confirmed by the distribution
of the Poynting vector shown on Fig. 4(b) [21]. Note that
the energy flux propagating inside the wire is quite small in
comparison with that outside of it, due to the very small
absorption by the surrounding air. The high concentration
of energy at the interface enables the absorbing nanowire to
support the propagation of Zenneck SPPs. The energy flux
increases as the frequency decreases, which indicates that
the major contribution to the SPP thermal conductance of
the nanowire arises from the low frequency regime.
Given the existence (Figs. 4) and propagation [Fig. 3(b)]

of Zenneck SPPs along the nanowire-air interface, Fig. 3(a)
indicates that the dispersion relation for the propagation of
Zenneck SPPs contains one branch (N ¼ N1), which starts
at the zero frequency (A1 ¼ 0). Note that ωmax

1 >
300 Trad=s, and, hence ,B1 ¼ ℏωmax

1 =kB > 2283 K.
Thus, Fig. 2 establishes that for any temperature comparable
or smaller than 300 K (T=B1 → 0), the SPP thermal

conductance of the nanowire of both SiC and SiO2 is
quantized by the value G0. More generally, this quantization
holds for any polar nanowire, as rigorously demonstrated
above. This is not the case of ideal materials with zero
absorption (εI ¼ 0), in which the existence of SPPs (Fano
modes [14,16]) is restricted to narrow intervals of high
frequencies, determined by ε1 < −ε2 [17,23].
Figure 5 shows the total thermal conductance of SiC due

to phonons and Zenneck SPPs, as a function of temper-
ature. The phonon component was calculated with Eq. (6)
and the dispersion relation of SiC (see Supplemental
Material [25]) [24]. Note that this component exhibits a
linear (temperature-independent) behavior in the low (high)
temperature regime, which agrees with Fig. 2. Moreover,
the SPP component is comparable to (higher than) that of
phonons, for temperatures about (higher than) room tem-
perature. This establishes that Zenneck SPPs can surpass
the energy transported by phonons.
The SPP quantum of thermal conductance could be

measured generating Zenneck SPPs by thermal excitation
at one side of the nanowire, and detecting their diffraction
at the other side. This diffracted signal contains informa-
tion about the SPP contribution to the heat flux along the
nanowire and it can be recorded through an IR micro-
scope, over a wide range of frequencies and temperatures
comparable to room temperature. Provided that the
phonon contribution to the thermal conductance is
known, the experimental data are expected to yield a
SPP thermal conductance with a linear dependence on
temperature, which is the signature of its quantization (see
Supplemental Material [25]). Since the phonon compo-
nent is not quantized at room temperature, the detection of
this signature should be due to Zenneck SPPs only.
In summary, the existence of a universal quantum of

thermal conductance π2k2BT=3h due to the propagation of
Zenneck SPPs along the surface of a polar nanowire has
been demonstrated, not only for temperatures much smaller
than 1 K, as is the case of electrons and phonons, but also
for temperatures comparable to room temperature. This
quantization arises from Zenneck SPPs propagating with
very large propagation lengths at low frequency. The room-
temperature result can provide guidelines to improve the
thermal performance of nanomaterials.
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FIG. 4 (color online). (a) Frequency dependence of ReðpÞ
inside and outside of the nanowires of SiC and SiO2 surrounded
by air. (b) Poynting vector for a nanowire of SiC with radius
a ¼ 50 nm, as a function of the radial coordinate.

FIG. 5 (color online). Phonon and SPP components of the
thermal conductance of SiC, as a function of temperature.
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