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Quantum criticality near a tricritical point is studied in the two-component Bose-Hubbard model
on square lattices. The existence of a quantum tricritical point on a boundary of a superfluid-insulator
transition is confirmed by quantum Monte Carlo simulations. Moreover, we analytically derive the
quantum tricritical behaviors on the basis of an effective field theory. We find two significant features of the
quantum tricriticality that are its characteristic chemical potential dependence of the superfluid transition
temperature and a strong density fluctuation. We suggest that these features are directly observable in
existing experimental setups of Bose-Bose mixtures in optical lattices.
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Rapid development in experiments with ultracold gases
confined in optical lattices has advanced the studies of
quantum phase transitions (QPTs), thanks to their precise
controllability of various parameters, such as external
potentials, interparticle interactions, and lattice geometry,
over a wide range. Several QPTs that are of close relevance
to other condensed matter systems have been realized in
experiments, such as superfluid (SF)-Mott insulator (MI)
transitions in a variety of lattice geometries [1–4], SF-Bose
glass transitions in a random [5,6] or quasiperiodic [7,8]
potential, magnetic transitions in a tilted [9] or triangular
[10,11] optical lattice, and topological transitions in a
double-well optical lattice [12]. Recent experiments have
reported even the observation of quantum critical behaviors
accompanying the second-order QPT between vacuum and
a SF [13], thus providing new opportunities for studying
quantum criticality in optical-lattice systems.
Tricriticality, or, more generally, multicriticality, is a

fundamental concept in the study of phase transitions [14].
A tricritical point (TCP) marks a point at which a second-
order (continuous) phase transition changes to a first-order
(discontinuous) phase transition on a single phase boundary
in a two parameter phase diagram. Tricriticality has been
discussed in the contexts of several condensed matter
systems, e.g., FeCl2 [15], 3He-4He mixtures [16], and
correlated electron materials [17,18], as well as in quantum
chromodynamics [19]. Due to its unique nature, unconven-
tional critical properties are expected to—and indeed are
found to—emerge in the vicinity of a TCP. As such,
exploration of TCPs can be a useful strategy for finding
novel universality classes of phase transitions. Despite such
ubiquity and importance of TCPs, understanding of quan-
tum tricriticality remains limited to a phenomenological
level because of lack of experiments with flexible control-
lability and exact numerical simulations on a microscopic
model, in contrast to the classical one.

In this Letter, we use the unbiased numerical method of
quantum Monte-Carlo (QMC) simulations based on the
Feynmann path integral [20] to show the existence of
quantum TCPs in the ground state phase diagram of the
two-component Bose-Hubbard model (BHM) on square
lattices. This result suggests that quantum tricriticality can
realistically be studied in Bose-Bose mixtures trapped in
optical lattices, which are subsistent experimental setups
[21–26]. From a simple mean-field (MF) analysis, we
explain that effective two-body attraction causes the emer-
gence of the TCPs. Furthermore, analyzing an effective
continuum model, we derive critical behaviors regarding
the TCP. In the finite-temperature phase diagrams obtained
by the QMC method, we identify the quantum tricritical
behavior of the SF-normal transition temperature, which
can be directly measured in experiments [13].
We consider the two-component BHM on square lattices

(d ¼ 2) [27]

H ¼ −tX
α;hj;li

ðb†α;jbα;l þ H.c.Þ − μ
X
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þ
X
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Uαα0
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†
α0;jbα0;jbα;j; (1)

where b†α;j (bα;j) is a creator (annihilator) of an α-type
boson at site j, t is the nearest neighbor hopping amplitude,
μ is the chemical potential, and UAA ¼ UBB ≡U > 0
(UAB ¼ UBA) is the on-site intracomponent (intercompo-
nent) repulsive interaction. This model describes Bose-
Bose mixtures confined in an optical lattice [21–26]. In the
optical-lattice experiments, U=t is controlled by changing
the depth of the optical lattices [27], and UAB is controlled
by using Feshbach resonances [23,28,29] or component-
dependent optical lattices [26,30]. Although the hopping
amplitudes are different for each component, in general, we
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use a common value t for simplicity. Indeed, in a gas of
87Rb having two atomic spin states as an internal degree of
freedom, the difference of hopping amplitudes between
these two spin states is negligible [22]. Notice that we
choose ℏ ¼ kB ¼ a ¼ 1 as our units throughout the Letter,
where a is the lattice constant.
When d ≥ 2, the possibility of the first-order QPT from

the SF to the MI phase with even fillings has been
previously suggested by Monte Carlo simulations on the
two-component J-current model [31], which is a (dþ 1)-
dimensional classical analog of Eq. (1), and MF analyses
on Eq. (1) [32,33]. Similar first-order QPTs have been
found also in other related models [34,35]. Below, we
demonstrate the presence of the first-order QPT and the
associated TCPs in the t − μ phase diagram by means of
direct QMC simulations on Eq. (1).
We apply the worldline QMC method to the model (1)

with a periodic boundary condition. We use a modified
version [36] of the directed-loop algorithm [37] for updating
worldline configurations. Although the modification is
originally made for the single component BHM, it is also
crucial for this application.We set the maximum occupation
number at a single site as nmax ¼ 4 for each component.
Figure 1 shows the ground-state phase diagram of the

model (1) near the n ¼ 2Mott lobe atUAB=U ¼ 0.9, where
n≡ nA þ nB is the total density and nα is the density of
type-α bosons. At this value of UAB=U, the phase sepa-
ration does not occur in either the SF or MI phase. The
phase boundary of the second-order QPT between the SF
and MI phase is determined from the single-particle and
single-hole Mott gaps estimated by using the QMC data of

the Green’s function hbA;kðτÞb†A;kð0Þi at k ¼ 0 [38], where
b†A;k ≡ L−d=2P

jb
†
A;j expðik · xjÞ and xj represents the posi-

tion vector of site j. We estimate the Mott gaps at μ=U ¼
1.35 and L ¼ 12 and 16 with several values of Zt=U. In the
scale of the phase diagram (Fig. 1), finite-size effects are
negligible. In the case of the first-order QPT, the Mott gaps
do not locate the phase boundary, but the spinodal of the
MI state. To identify the first-order phase boundary, we
calculate the total density n near the tip of the n ¼ 2 Mott
lobe as a function of μ=U or Zt=U as shown in the inset of
Fig. 1. At Zt=U ¼ 0.16, we find a clear jump in n versus
μ=U, and we determine the transition point from the
position of the jump for L ¼ 16. The spinodal located
by the Mott gap is well separated from the true transition
point and is located in the SF side. When Zt=U decreases,
the jump becomes smaller and is supposed to vanish at the
TCP. However, it is practically very difficult to estimate
numerically the position of the TCPs from the vanishment
of the jump, because the jump is too small to be detected
close to the TCPs.
Instead, we determine the TCPs from the difference in

the critical behavior of the density fluctuation κ ≡ ∂n=∂μ
between the generic [39] and tricritical transitions. Since
the density of atoms is locally observable in optical-lattice
experiments [40], this density fluctuation can be directly
probed. To determine the critical behavior across the
transition between the MI phase with even filling and
the SF phase with incommensurate filling, we analyze the
effective action in continuum given by

Seff ¼ βVf0 þ
Z

dτ
Z

ddx
�X

α

�
ψ�
α
∂ψα

∂τ þ 1

2m
j∇ψαj2

− rαjψαj2 þ
u
2
jψαj4 þ

w
3
jψαj6

�
þ uABjψAj2jψBj2

þ wABðjψAj4jψBj2 þ jψAj2jψBj4Þ
�
; (2)

where β≡ T−1 is the inverse temperature, V ≡ Ld is the
volume, and f0 is the free energy density of the MI state.
A derivation of the effective model is shown in detail in the
Supplemental Material [41]. In Eq. (2), ψαðx; τÞ denotes
the SF order-parameter field of type-α bosons. Inclusion
of terms up to the sixth order of ψα is necessary to describe
the shift from the generic transition to the first-order one
through the TCP. The dynamical and critical exponents for
the transitions described by the action (2) are z ¼ 2 and
ν ¼ 1=2. Applying the MF theory combined with renorm-
alization group analysis to the effective model (2), we
obtain the critical behaviors of the density versus the
chemical potential as shown in Table I. The results imply
that in two dimension κ ∝ lnð1=δμÞ for the generic tran-
sition while κ ∝ δμ−1=2 for the tricritical one (see the
Supplemental Material [41] for a detailed derivation).
Here δμ≡ jμ − μcj and μc denotes μ at the critical point.

Zt/U

/U

Second order QPT

MI: n=2

/U

n A
+

n B

Spinodal

Zt/U = 0.16 
t    = L

SF: SA= SB > 0

First order QPT

MF

TCP

FIG. 1 (color online). Ground state phase diagram at
UAB=U ¼ 0.9 computed with QMC and MF methods. Thick
(thin) green solid line shows the phase boundary of the first
(second)-order QPT computed by MF analysis. Black (red)
closed circles are the second-order QPT points or spinodals
computed by QMC simulations at L ¼ 16 (L ¼ 12) and
μ=U ¼ 1.35. Blue open circles are the first-order QPT points
at L ¼ 16. Diamonds are TCPs. Inset: μ dependence of total
density of bosons at Zt=U ¼ 0.16.
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It is remarkable that for the tricritical case there is no
logarithmic correction even in d ¼ 2, which is the upper
critical dimension. Utilizing these critical behaviors, the
TCPs are determined as follows. In Fig. 2, we depict κ
along the lower and upper edges of the lobe estimated by
the Mott gap at μ=U ¼ 1.35 and L ¼ 16. There we see that
κ has a distinct peak at a certain value of Zt=U. The peak
position identifies the TCPs at which κ diverges more
strongly than at the generic QCPs or at the spinodal of the
MI state. Notice that although κ diverges weakly as
∼ lnð1=δμÞ even at generic QCPs in d ¼ 2, the QMC data
do not show such a divergence because the phase boundary
computed with L ¼ 16 is expected to be located inside the
SF phase in the thermodynamic limit.
We discuss a physical mechanism for the shift of the

QPT from second order to first order and the associated
emergence of the TCP within a MF approximation. By the
green line in Fig. 1, we show the phase boundary computed
with the use of the MF theory [32,33] for comparison.
While a quantitative difference in the first-order phase
boundary and the TCP between the MF and QMC methods
is discernible, the MF analysis correctly captures the
qualitative features of the phase diagram. Applying the
MF approximation ψαðx; τÞ ¼ ϕα to the effective model
(2), we obtain the MF action Smf ¼ βVf with the free
energy density written as

f ¼ f0 − 2rϕ2 þ ðuþ uABÞϕ4 þ 2

3
ðwþ 3wABÞϕ6; (3)

where rA ¼ rB ≡ r. Taking into account the symmetry
between the two components, we here set jϕAj ¼ jϕBj≡ ϕ
that corresponds to the superfluid order parameter hbα;ji
characterizing the SF-MI transition. From Eq. (3), one sees
that the transition is of first order when uþ uAB < 0 while
it is of second order when uþ uAB ≥ 0. In Fig. 3, we plot
−u and uAB as functions of Zt=U along the lower and upper
edges of the lobe (see the Supplemental Material [41] for
how to calculate u and uAB). When Zt=U increases in the
region Zt=U > 0.05, uAB becomes strongly attractive so
that uþ uAB changes its sign at a certain point, which is
nothing but the TCP. Thus, the shift of the QPT from
second order to first order can be attributed to the strong
intercomponent attraction, which leads to the collapse of
the SF state at low SF density.

To complete the ground-state phase diagram, one
needs to reveal whether there exists the supercounterflow
order in the MI phase [31]. In Fig. 4, we show the
SF stiffness computed with QMC simulations from
the fluctuation of winding numbers [42,43] as ρSα≡
hW2

αi=ð4βtÞ, ρSC ≡ hðWA −WBÞ2i=ð4βtÞ, and ρSP≡
hðWA þWBÞ2i=ð4βtÞ, where WxðyÞ

α is a winding number
of α-type bosons’ worldlines of xðyÞ direction. The super-
counterflow (paired superfluid) order is present if ρSC > 0
and ρSP ¼ 0 (ρSP > 0 and ρSC ¼ 0). All the kinds of
stiffness vanish inside the MI region, thus confirming
the absence of those SF orders. This validates the use of
the effective action (2) that consists only of the order
parameter of single-particle SF ψα. In Fig. 4, we also
find ρSC > ρSP, i.e., hWA ·WBi < 0, which is consistent
with the prediction of the effective attractive interac-
tion uAB < 0.
Next let us consider the finite-temperature phase dia-

gram. While the nature of the finite temperature transition
differs from that at zero temperature, the transition temper-
ature Tc near a second-order QPT is governed by the
quantum criticality [44,45]. The critical behavior of Tc is of
particular importance in the sense that it has been directly
measured in recent experiments in both contexts of 4He
films [46] and optical lattices loaded with ultracold gases

Zt/U

t

Zt/U

Lower lobe Upper lobe

t=L

FIG. 2 (color online). Density fluctuation κ ≡ ∂n=∂μ at the
lower (left panel) and upper (right panel) edges of the lobe
estimated from the particle and hole gaps. The shaded regions
mark the peaks of κ.

n=2, UAB /U=0.9

Zt/U

Upper TCP
Lower TCP

Zt/U

FIG. 3 (color online). Zt=U dependence of−u=U and uAB=U at
UAB=U ¼ 0.9, for the lower (left panel) and upper (right panel)
edges of the lobe by Ginzburg-Landau expansion of energy
density from jnA; nBi ¼ j1; 1i.

TABLE I. Quantum criticality of the density δn≡ jn − n0j
measured on that at the MI state n0 and the transition temperature
Tc as functions of the chemical potential measured on the critical
point δμ≡ jμ − μcj.

Density Transition temperature

d ¼ 2 Generic δμ ln ð1=δμÞ δμ ln ð1=δμÞ= ln ln ð1=δμÞ
d ¼ 2 Tricritical δμ1=2 δμ1=2= ln ð1=δμÞ
d > 2 Generic δμ δμ2=d

d > 2 Tricritical δμ1=2 δμ1=d
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[13]. On the basis of the effective model (2), we derive the
critical behavior of Tc that is summarized in Table I (see
the Supplemental Material [41] for details). As expected,
the critical behaviors for the generic QPT are the same as
that for the vacuum-SF QPTof a dilute Bose gas [45,47,48],
and these QPTs belong to the same universality class.
In contrast, the tricritical behavior is distinctly different
from the standard one; specifically, Tc ∝ δμ1=d if we
disregard the logarithmic contributions in d ¼ 2.
Figure 5 shows the transition temperatures as functions

of μ=U obtained from QMC simulations for several values
of Zt=U. The transition temperatures are estimated from
jumps of ρSA and n. If a transition to the SF phase is of
the Berezinskii-Kosterlitz-Thouless (BKT) type, it is well
known that ρSA exhibits the universal jumpΔρSA ¼ T=ðtπÞ,
at the transition point [49]. Thus the BKT transition
temperature is estimated from the cross point of T=ðtπÞ
and ρSAðL ¼ 48Þ as shown in Fig. 5(b). On the other hand,
ρSA shows a larger jump than T=ðtπÞ at the first-order phase
transition. As shown in Fig. 5(c), we find the first-order
phase transition at finite temperatures. This means that
there is a tricritical line in the T − t − μ phase diagram and
the quantum TCPs are its end points.
To examine the shift of the criticality from Tc ∝ δμ

(generic) to ∝ δμ1=2 (tricritical), we fit Tc=t by assuming a
fitting function Tfitðδμ̄Þ ¼ ½C2

1 þ C2δμ̄�1=2 − C1 with fitting
parameters C1;2, where δμ̄≡ δμ=U. Since Tfit ∝ δμ̄1=2 for
C1 ¼ 0while Tfit ∝ δμ̄ forC1 > 0 at small δμ̄, the approach
to the tricritical behavior can be identified as the decrease of
C1 towards zero. By the fitting to the numerical data in
Fig. 5(a), we indeed find that C1 at the TCP, i.e.,
Zt=U ¼ 0.12, is much closer to zero compared to C1 for
the generic QPTs (Zt=U ¼ 0.04 and 0.08). Thus, the
tricritical behavior of Tc has been corroborated. Notice
that within the temperature range of our numerical simu-
lations the fitting function that neglects logarithmic
contributions fits better to the data than the one with
logarithmic contributions, as was also the case in previous
experiments [13,46].

In conclusion, we have computed the ground-state and
finite-temperature phase diagrams near the n ¼ 2Mott lobe
of the two-component BHM in square lattices by the QMC
method. It was shown that the SF-MI transition is of first
order near the tip of the Mott lobe while it is of second
order far from the tip. We have identified the TCPs on the
SF-MI phase boundary. Since the model is a quantitative
counterpart of a realistic experimental system, namely, a
Bose-Bose mixture in an optical lattice, this finding of the
TCPs makes it possible for optical-lattice experiments to
address the issue of quantum tricriticality. Moreover,
we have derived critical behaviors of the QPT across the
TCP. The predicted quantum tricritical behavior of the
SF-normal transition temperature may be examined in
future experiments.
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