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In electrified liquid jets, varicose instability leads to jet breakup into droplets while whipping instability
is responsible for jet stretching. We show that the coupling and relative importance of these two instabilities
dictates the outcome for jet breakup. The codevelopment of transverse and radial perturbations lead
to remarkable breakup modes linked to initial perturbation magnitude, perturbation wave numbers, and jet
charge levels.
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The breakup of liquid jets is ubiquitous with rich
underpinning physics and widespread applications. The
natural breakup of liquid jets originates from small ambient
perturbations, which can grow exponentially until the
amplitude as large as the jet radius is reached. For
unelectrified inviscid jets, surface energy analysis [1,2]
shows that only the axisymmetric perturbation is possibly
unstable, and this mode is referred to as varicose instability.
For electrified jets, the presence of a surface charge enables
additional unstable modes, among which the most common
one is the whipping (or kink) instability that bends and
stretches the charged jet [3–9]. The whipping mode is
responsible for the phenomena of electrospinning [10,11],
which is a convenient approach for making nanofibers from
a wide range of polymer solutions. A closer examination of
the two instabilities suggests that due to mass conservation,
the uneven jet stretching from whipping may translate
into radial perturbations and trigger varicose instabilities.
Although the varicose and whipping instabilities of electri-
fied microjets have both been extensively studied sepa-
rately, there is little attention paid to the combined effect of
these two, which may lead to new jet breakup phenomena.
Without a comprehensive physical picture of the relative
importance of the coexisting varicose and whipping insta-
bilities, the breakup of electrified jets can be neither fully
understood nor well controlled.
In this Letter we show the phenomenology and a

simplified linear model of electrified microjets undergoing
both varicose and whipping instabilities. We show the
perturbations of sweeping frequency lead to distinct jet
breakups linked to perturbation wave numbers and jet
charge levels. Interestingly, a bifurcation mode with clean
breakup appears as the two instabilities cross over at the
breakup point.
Experiments.—Figure 1(a) shows the schematic of the

experimental setup. To generate electrified microjets, the
liquid is fed througha stainless steel capillary (OD ¼ 300 μm
and ID ¼ 150 μm) charged at ∼2kV. Under the intense
dc electric field, the liquid meniscus deforms into a Taylor
cone [12], with a jet erupting from the tip of the cone.

The liquids used in the experiment are pure ethanol.
The jet diameter is controlled by varying the liquid flow
rate from1 to 16ml/h, corresponding to the jet diameter from
about 10 to 50 μm.
The transverse perturbation is introduced by the fringe

electric field in a small gap (∼200 μm) between two razor
blades on the same plane. Each blade is mounted on an
x−y−z stage for precise gap adjustment and position
alignment. The two blades, modeled as thin plates, are
connected to a sinusoidal alternating current (ac) signal
source. We choose to use thin plates instead of cylindrical
rods or wires [13] because the plates essentially form an
“extractor” electrode, allowing an intense dc component
of the electric field to be established between the nozzle
and the blades. At 15 mm below the blade electrodes
is a collector electrode charged at voltage of −1 to −4 kV.
The collector electrode has the dual function of sweeping
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Fig. 1. Electrified microjet under transverse electrohydro-
dynamic perturbation. The jet radius is 10 μm.
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the charged droplets away from the blade electrode and
adjusting the jet charge level (to be explained later). The
ac signal has Vpp (peak-to-peak voltage) from 0 to 330 V
with zero dc offset, and the virtual ground is the same as the
dc power supplies. The horizontal electric field Eðz; tÞ at
the symmetric plane of two large and thin plates can be
solved using conformal mapping and the solution is

Eðz; tÞ ¼ E0ðzÞ sin 2πft;
E0ðzÞ ¼ 2Vpp=½πa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðz=aÞ2
q

�; (1)

where 2a is the gap, and z ¼ 0 corresponds to the position
of the blade plane.
The ac frequency applied is from 10 to 200 kHz. The

natural oscillation frequency of a liquid meniscus (Taylor
cone in this case) can be estimated by ½γ=ðρRn

3Þ�1=2, where
γ is the liquid-air interfacial tension, ρ is the liquid mass
density, and Rn is the nozzle radius. For a typical nozzle
diameter of 300 μm, the Taylor cone oscillation frequency
is below 1 kHz, which is much less than the frequency
range of the ac signal applied. Therefore, despite the fact
that the blade electrodes are close to the nozzle, the setup
can generate stable and reproducible electrified jets because
the Taylor cone does not respond to the relatively high
frequency ac signal.
The jet has surface charge density of σ ¼ I=ð2πRvjÞ,

where I is current carried by the jet, R is the unperturbed jet
radius and vj is the jet velocity. The dimensionless charge
level Γ is defined as the ratio of electric stress to surface
tension of the jet, i.e., Γ ¼ σ2R=ε0γ, with ε0 being vacuum
permittivity. Experimentally, Γ can be varied in two ways:
either by changing the flow rate, or by changing the jet
velocity. Note that σ is independent of the flow rate Q[14],
while R scales withQα, where α is a scaling factor typically
between 1/3 and 1/2. This suggests the charge level

Γ ∝ Qα. On the other hand, if Q is fixed, one can find
that Γ ∝ v−2−αj , and the jet velocity vj can be tuned by
adjusting the driving field between the blades and the
collector.
The experimental phenomena were recorded with a high

speed camera (Phantom v12.1) and a long working distance
microscope lens. A collimated LED light source is placed
behind the jet and pointed to the camera to form the
shadowgraph configuration.
Experimental results and discussion.—Figure 2 shows

the typical experimental phenomena of electrified jets
under transverse electrohydrodynamic (EHD) excitations
at different wave number x ¼ 2πRf=vj. The image
sequence suggests that the whipping dominates at small
wave numbers while varicose is more prominent for larger
wave numbers.
We can gain substantial insights from a simplified linear

model without undertaking the complex nonlinear descrip-
tion of the problem. We first write a dispersion relationship
for a charged jet [9]:

ωm
2 ¼ ω2

Rx
I
0
mðxÞ
ImðxÞ

�

ð1 −m2 − x2Þ − Γ
�

1þ x
K

0
mðxÞ

KmðxÞ
��

;

(2)

where ωm is the instability growth rate at wave number x,
ωR ¼ ðγ=ρR3Þ1=2, ImðxÞ, and KmðxÞ are modified Bessel
functions of the first and second kind.
The phenomenology is consistent with the dispersion

relationship [Eq. (2)], where the varicose growth rate is
greater than the whipping growth rate for small x and the
trend is reversed for large x. However, the growth rate alone
does not paint the complete picture. The phenomenology
should be determined by the combined effect of both
growth rate and the initial perturbation. To that end, next
we estimate the magnitude of initial transverse and radial

    x=0.1                               0.3                      0.4                      0.6                  0.7             0.75      1.1       1.6 
S=13.8                            6.2                      1.7                       0.9                  0.4              0.2      0.1        ~0  

100 µm 

(a)                                   (b)                       (c)                       (d)                   (e)               (f)       (g)        (h)       (i)       

f = 5 kHz                             15kHz              20kHz                  30kHz               35kHz         38kHz   55kHz  80kHz 

Fig. 2. Typical response of the electrified jet to external transverse perturbation introduced by the ac electric field between the narrow
gap of two in-plane blade electrodes. Vpp ¼ 300 V and 2a ¼ 100 μm [15].
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perturbations. We use the azimuthal number m to denote
the perturbation mode, with m ¼ 0, 1 being the axisym-
metric (varicose) and transverse (whipping) perturbations,
respectively. As the jet passes the blade electrodes, the
horizontal stress acting on the jet is Eðz; tÞσ, and the jet will
bend transversely with initial magnitude of δy during the
first half cycle 1=ð2fÞ. The bending motion of the jet can be
numerically solved if we only consider inertia and assume
internal flows are negligible for small perturbations. These
assumptions are proved to be reasonable, as decent agree-
ment between δy obtained numerically and experimentally.
Moreover, at sufficiently high frequency, within a half cycle
1=2f, the jet only travels a short distance compared to a,
i.e., f > vj=2a. Then, Eðz; tÞ ≈ Eðz ¼ 0; tÞ, which sug-
gests that the dimensionless initial whipping perturbation is
ξ1 ¼ δy=λ ¼ CVpp=ðafÞ, where C is a geometric correc-
tion factor of order 10−4 for the experimental setup in
this work.
The radial perturbation can be estimated using mass

conservation πR2dsþ 2πRsdR ¼ 0, where s is the stretched
jet length over half wavelength λ=2, and dR can be
interpreted as the radial perturbation. For sinusoidal curves
with small magnitude, ds ≈ δy2=2λ, and the dimensionless
varicose perturbation is ξ0 ¼ dR=R ¼ ðδy=λÞ2=4 ¼ ξ1

2=4.
At this point we can write ηm, the dimensionless

radial m ¼ 0 or transverse (m ¼ 1) perturbation as
ηmðtÞ ¼ ξm expðωmtÞ. Then the relative importance of the
two instabilities can be quantified by the crossover ratio:

S ¼ ½λη1ðtÞ�=½Rη0ðtÞ�; (3)

Of particular interest of this ratio is the breakup point, at
which the dimensionless radial perturbation grows into
unity or η0ðtBÞ ¼ 1, where tB is the time elapsed between
the breakup point and the liquid mass first passes the EHD
exciter. tB is estimated by choosing the smaller value
between excited breakup time t0 ¼ − lnðξ0Þ=ω0 and natural
breakup time tR ≈ 35=ωR [16] (if the natural perturbation
outgrows exited perturbation). Therefore, at the breakup
point, the crossover ratio becomes

S ¼ λη1ðtBÞ=R: (4)

The S value indicates the relative importance of the
whipping and varicose instabilities. Experimentally, λ can
be obtained from the jet velocity and excitation frequency,
while η1 can be directly measured from images. We
emphasize that because Eq. (4) is essentially based on a
linear model, for small wave numbers the crossover ratio
should be considered only qualitative.
In Fig. 2(a) (x ¼ 0.1), S ¼ 13.8 ≫ 1, indicating the

whipping should dominate. Indeed, Fig. 2(a) clearly shows
that whipping mode dictates the shape of the jet. The
varicose mode appears to be superimposed on the whipping
mode. As the wave number increases [Figs. 2(b) and 2(c)],
the jet still exhibits primarily the whipping mode because S

remains greater than unity. However, varicosemode plays an
increasingly important role, leading to earlier jet breakup.
Interestingly, near certain wave numbers, the crossover
ratio S is close to 1 [Fig. 2(d)], and the importance of
whipping and varicose modes is comparable, resulting in a
unique whipping assisted bifurcation mode. The jet breaks
up into two identical droplets within each excitation period
without any satellite droplets. This phenomenon happens
when the whipping mode has nonzero growth rate, and the
2nd harmonic of the applied perturbation is close to the
Rayleigh frequency which has the maximum growth rate.
When bifurcation is observed with the naked eye, the jet
appears to split into two [Fig. 2(i)].
As the wavelength is further reduced, S becomes less

than 1, whipping is suppressed, and the varicose instability
dominates [Figs. 2(e)–2(g)]. Noticeably, in Fig. 2(e), the jet
breaks up within each complete excitation period (instead
of the half excitation period in the bifurcation mode)
into dumb bell shaped liquid segments. When the liquid
segment tries to regain spherical shape, the reduced surface
area gives rise to surface charge density that exceeds the
Rayleigh charge limit, in which electric stress overwhelms
the surface tension. Consequently, the newly formed
droplet would experience Coulombic fission [17,18], shed-
ding smaller droplets to reduce the charge level of the main
droplet below the Rayleigh limit [Fig. 2(e)].
In Fig. 2(g), the small value of S suggests that whipping

instability virtually does not develop. The jet breakup is
almost entirely governed by the varicose mode. At even
higher wave number [Fig. 2(h)], the applied EHD excita-
tion does not contribute to varicose instability, and the jet
behaves similarly as a natural, unperturbed jet.
We can further map the phenomenology in the x−Γ

diagram (Fig. 3) to take both charge levels and wave
numbers into account. The distinct modes of jet response
behavior are separated by boundaries set by the Rayleigh
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Fig. 3 (color online). Jet response phenomenon mapped in the
x−Γ diagram. Scattered data points are experimental data.
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limit ceiling Γ ≥ 1.5 and several cutoff curves obtained
from the dispersion relationship. Here the “cutoff”: refers to
the zero growth rate of the corresponding instability, and
below the cutoff curve, the corresponding instability will
not grow. Specifically, these modes of jet response are
(i) The varicose or Rayleigh mode.—[zone I and

Fig. 4(a)], which is at the proximity of the maximum
growth rate of the varicose mode (dashed curve). Stronger
perturbation (i.e., larger Vpp=a) will expand the area of the
domains of the varicose mode. In principle, the domain is
bound by the 2nd harmonic cutoff, whipping cutoff, and
varicose cutoff curves. A submode can be identified as the
overcharged varicose mode [Fig. 4(b)], which is above the
Rayleigh limit ceiling, and generated droplets experience
Coulombic fission.
(ii) The whipping assisted bifurcation mode.—[zone II

and Fig. 4(c)], which is bound by the 3rd harmonic and
whipping cutoff curves. In this domain, the whipping has
nonzero growth rate and tears the jet in an alternating
fashion that assists jet bifurcation. Again, above the
Rayleigh limit ceiling, the generated droplets experience
Coulombic fission [Fig. 4(d)]. In addition, stronger per-
turbation also will push the data points closer to the
boundary of cutoff curves.
(iii) The varicose assisted bifurcation mode.—[zone III

and Fig. 4(e)], which is bound by cutoff curves of the
2nd harmonics, 3rd harmonics, and whipping instabilities.
In this mode, the jet charge levels are low and the jet wavy
patterns from initial transverse perturbation will not be
amplified because of the zero growth rate of whipping. It is
the varicose instability that drives the wavy jet breakup.
Bifurcation happens because the formed droplets are off

from the center line alternatingly due to the initial wavy jet
pattern. We note that jet bifurcation similar to the behavior
in zone (iii) has been reported by Lin and Webb [19].
In [19], the liquid jet is charge neutral (Γ ¼ 0), and the
perturbation was introduced through the transverse vibra-
tion of a slender glass nozzle. Despite the different source
of perturbation, the jet breakup behavior in [19] can still
be categorized as varicose assisted bifurcation which falls
into zone (iii) of the x−Γ diagram.
At smaller wave numbers, phenomena corresponding

to higher order harmonics of the Rayleigh mode can be
identified. For example, Fig. 4(f) shows one such case. The
jet appears to experience quadrufurcation, emitting four
streams of droplets. It can be linked to the 4th harmonic of
the Rayleigh mode. Here, during each complete transverse
motion cycle, the 4th harmonic of the radial perturbation
has a nonzero growth rate that breaks up the cycle into four
droplets.
In summary, we have found and categorized different

outcomes of breakup of electrified jets that undergo
both varicose and whipping instabilities. The codevelop-
ment of transverse and axisymmetric perturbations leads
to remarkable jet breakup behavior attributable to initial
perturbation magnitude, perturbation wave numbers, and
jet surface charge levels. The experiment apparatus used
in this work provides a simple and nonintrusive approach
to systematically induce the whipping instability of the
electrified microjets. The well-controlled triggering and
codevelopment of the instabilities expands the possibilities
of electrified jets breakup, and may spawn new ways
of generating micro- or nanodroplets and controlled
electrospinning.
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