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An integrable deformation of the type IIB AdS5 × S5 superstring action is presented. The deformed field
equations, Lax connection, and κ-symmetry transformations are given. The original psuð2; 2j4Þ symmetry
is expected to become q deformed.
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Introduction.—Integrability plays a central role in the
study of the AdS=CFT correspondence [1] between type
IIB superstring theory on the AdS5 × S5 background [2]
and the maximally supersymmetric Yang-Mills gauge
theory in four dimensions (see Ref. [3] for a review).
On the anti–de Sitter side of this correspondence, integra-
bility entered the scene with the discovery that the
Lagrangian field equations of the AdS5 × S5 theory can
be recast in the zero curvature form [4]. This implies the
existence of an infinite number of conserved quantities.
It is quite natural to seek deformations of the AdS5 × S5

superstring that preserve this integrable structure. An
important example of such an integrable deformation is
the so called β deformation associated with strings on
the Lunin-Maldacena background [5]. The integrability
of this model was shown in Refs. [6,7] (see also the review
of Ref. [8] and references therein). Here, we shall take a
more systematic approach to the construction of integrable
deformations by demanding the deformed theory to be
integrable from the very outset. This requires approaching
the problem from the Hamiltonian perspective.
Let us recall that in order to prove integrability in the

Hamiltonian formalism, one must show the existence of an
infinite number of conserved quantities in involution. More
precisely, this follows at once if the Poisson bracket of the
Hamiltonian Lax matrix can be shown to take the specific
form in Refs. [9,10]. This was achieved in the case of the
AdS5 × S5 superstring in Ref. [11].
The algebraic structure underpinning this property of

the AdS5 × S5 superstring was identified in Ref. [12]. By
utilization of this structure, an alternative Poisson bracket
with the same property was subsequently constructed in
Ref. [13]. Moreover, this second Poisson bracket is com-
patible with the original one, giving rise to a one-parameter
family of Poisson brackets sharing the same property [9,10],
which ensures integrability.
These features of the superstring theory are in fact shared

with bosonic integrable σ models [14]. In this latter context,
the two compatible Poisson brackets were used very
recently in Ref. [15] as a building block for constructing
integrable q deformations of the principal chiral model

associated with a compact Lie group and of the σ model
on a symmetric space F=G with F compact. In the case
of the principal chiral model, the deformation coincides
with the Yang-Baxter σ model introduced by Klimčík in
Ref. [16]. A key characteristic of this procedure is that the
integrability of the deformed theories is automatic since
it is used as an input in the construction. Moreover, an
interesting output is that the symmetry associated with left
multiplication in the original models is deformed into a
classical q-deformed Poisson-Hopf algebra.
It is possible to generalize the method developed in

Ref. [15] to deform the AdS5 × S5 superstring theory. The
whole construction is carried out at the Hamiltonian level
and will be presented in detail elsewhere. The purpose of
this Letter is to present the deformed model and exhibit its
key properties, namely, the existence of a Lax connection
and the invariance of the action under κ symmetry. Both
of these properties are shared with the Metsaev-Tseytlin
action [2]. The κ-symmetry invariance is an important
property in the context of type IIB supergravity. We will
comment on this last point in the Conclusion.

Setting.—We begin by recalling the necessary ingredients
for defining the AdS5 × S5 superstring action (see Ref. [17]
for more details). Let f denote the Grassmann envelope of
the superalgebra suð2; 2j4Þ, namely, the Lie algebra

f ¼ Gr½0� ⊗ suð2; 2j4Þ½0�⊕Gr½1� ⊗ suð2; 2j4Þ½1�;

where Gr is a real Grassmann algebra. Introduce the two-
dimensional field gðσ; τÞ taking value in the Lie group F
with Lie algebra f. The corresponding vector current Aα ¼
g−1∂αg belongs to f. The integrability of the AdS5 × S5

superstring action relies heavily on the existence of an order
4 automorphism that induces a Z4 grading of the super-
algebra suð2; 2j4Þ and, thus, of f. We denote by fðiÞ the
subspace of f with grade i ¼ 0;…; 3. The projector on fðiÞ
shall be denoted by Pi, and we also write MðiÞ ¼ PiM
for the projection of M ∈ f on fðiÞ. The invariant part fð0Þ
is the Lie algebra soð4; 1Þ⊕soð5Þ, and the corresponding
Lie group is G ¼ SOð4; 1Þ × SOð5Þ. The supertrace is
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compatible with the Z4 grading, which means that
StrðMðmÞNðnÞÞ ¼ 0 for mþ n ≠ 0 mod 4.
The extra ingredient needed to specify the deformation

is a skew-symmetric solution of the modified classical
Yang-Baxter equation on f. Specifically, this is an R-linear
operator R such that, for M;N ∈ f,

½RM;RN� − Rð½RM;N� þ ½M;RN�Þ ¼ ½M;N� (1)

and StrðMRNÞ ¼ −StrðRMNÞ. We choose the standard
Dynkin diagram of the complexified algebra slð4j4;CÞ and
take R to be the restriction to suð2; 2j4Þ of the C-linear
operator acting on slð4j4;CÞ by−i on generators associated
withpositiveroots,þiongeneratorsassociatedwithnegative
roots, and0onCartangenerators (for somechoiceof positive
and negative roots, see forthcoming article for details).
Other possible choices of Dynkin diagram and R matrices
require further study. We will make use of the operator
Rg ¼ Ad−1g ∘R∘AdgwithAdgðMÞ ¼ gMg−1.TheoperatorRg
is also a skew-symmetric solution of Eq. (1). Finally, we
define the following linear combinations of the projectors,

d ¼ P1 þ
2

1 − η2
P2 − P3;

~d ¼ −P1 þ
2

1 − η2
P2 þ P3:

The operator ~d is the transpose operator of d and, thus,
satisfies StrðMdðNÞÞ ¼ Strð ~dðMÞNÞ. The real variable
η ∈ ½0; 1½ will play the role of the deformation parameter.

Deformed action.—As pointed out in the Introduction, we
will restrict ourselves here to presenting the deformed
action and summarizing its most important properties. In
this section, we shall write down this action and indicate the
properties it shares with the undeformed action. Properties
that depend on the deformation parameter η are presented in
the next section.
Action: The action, which can be obtained by general-

izing the method developed in Ref. [15] to the case at hand,
reads S½g� ¼ R

dσdτL with

L ¼ − ð1þ η2Þ2
2ð1 − η2ÞP

αβ− Str

�
Aαd∘ 1

1 − ηRg∘d ðAβÞ
�
: (2)

We have introduced the projectors Pαβ
� ¼ 1

2
ðγαβ � εαβÞ

where γαβ is the world sheet metric with det γ ¼ −1 and
ϵ01 ¼ 1. World sheet indices are lowered and raised with
the two-dimensional metric. The operator 1 − ηRg∘d is
invertible on f for all values of the deformation parameter
η ∈ ½0; 1�. As in the undeformed case, there is an Abelian
gauge invariance gðσ; τÞ → gðσ; τÞeiθðσ;τÞ under which the
vector field Aα transforms as Aα → Aα þ ∂αθ:1. Indeed,
this leaves the action associated with Eq. (2) invariant
because Strð1:MÞ ¼ 0 for any M in suð2; 2j4Þ. This
invariance means that physical degrees of freedom do
not belong to the whole group F but rather to the projective

group PF. From now on, the commutators that will appear
should be considered as commutators of the projective
algebra pf, and the adjoint action of g Adg is that of the
projective group PF. This peculiarity already appears in the
undeformed case, and the reader is referred, for instance,
to the review in Ref. [17] for more details.
Original Metsaev-Tseytlin action: The undeformed

action corresponds to η ¼ 0. Indeed, when η vanishes,
the Lagrangian (2) simply becomes

Ljη¼0 ¼ − 1

2
Pαβ− StrðAαdjη¼0ðAβÞÞ;

¼ − 1

2
StrðγαβAð2Þ

α Að2Þ
β þ εαβAð1Þ

α Að3Þ
β Þ:

One, therefore, recovers at η ¼ 0 the type IIB superstring
action on the AdS5 × S5 background. This is the celebrated
Metsaev-Tseytlin action [2] (see also the reviews in
Refs. [17,18]).
SOð4; 1Þ × SOð5Þ gauge invariance: The action corre-

sponding to Eq. (2) has a gauge invariance gðσ; τÞ →
gðσ; τÞhðσ; τÞ where the function hðσ; τÞ takes values in
the subgroup G. This can be easily shown using the
corresponding transformations

Aα → h−1∂αhþ Ad−1h ðAαÞ;
dðAαÞ → Ad−1h ∘dðAαÞ;

Rg → Ad−1h ∘Rg∘Adh:
This gauge transformation does not depend on the defor-
mation parameter η.

Properties of the deformed action.—To present the proper-
ties of the action of Eq. (2), we will follow the approach
presented in the review [17] for the undeformed case.
Equations of motion: The equations of motion are most

conveniently written in terms of the vectors

Jα ¼
1

1 − ηRg∘d ðAαÞ;

~Jα ¼
1

1þ ηRg∘ ~d
ðAαÞ

and their projections Jα− ¼ Pαβ− Jβ and ~Jαþ ¼ Pαβ
þ ~Jβ. In the

following, we shall often use the fact that the components
J0− and J1− are proportional to each other. One has in
particular ½Jα−; Jβ−� ¼ 0 (and similarly for ~Jαþ). The equa-
tions of motion arising from the Lagrangian (2) are given
by E ¼ 0 where

E≔dð∂αJα−Þ þ ~dð∂α
~JαþÞ þ ½ ~Jþα; dðJα−Þ� þ ½J−α; ~dð ~JαþÞ�:

It is easy to check that the projection Eð0Þ of E onto fð0Þ
vanishes, in accordance with the gauge invariance of the
action described above.
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Rewriting the Maurer-Cartan equation: We now wish to
address the question of integrability of the theory defined
by Eq. (2). Recall that in the undeformed case, in deriving
the Lax connection one makes use of the Maurer-Cartan
equation Z ¼ 0 satisfied by Aα, where

Z≔
1

2
ϵαβð∂αAβ − ∂βAα þ ½Aα; Aβ�Þ:

To find a Lax connection, we therefore start by rewriting Z
in terms of Jα− and ~Jαþ. The resulting expression is a
quadratic polynomial in η. Using Eq. (1) for the operator
Rg, one can rewrite the coefficient of η2 of this polynomial
to obtain

Z¼∂α
~Jαþ−∂αJα−þ½J−α; ~Jαþ�þη2½dðJ−αÞ; ~dð~JαþÞ�þηRgðEÞ:

Anticipating the result, let us note here that choosing R to
be a nonsplit solution of the modified classical Yang-Baxter
equation is essential in order to preserve integrability as we
deform the theory. Before constructing the Lax connection,
let us remark that the field equations in the odd sector
P1;3ðEÞ ¼ 0 may be greatly simplified by considering the
combinations

P1∘ð1 − ηRgÞðEÞ þ P1ðZÞ ¼ −4½ ~Jð2Þþα; J
αð3Þ− �; (3a)

P3∘ð1þ ηRgÞðEÞ − P3ðZÞ ¼ −4½Jð2Þ−α; ~Jαð1Þþ �: (3b)

As a consequence, one can take as field equations in the
odd sector

½ ~Jð2Þþα; J
αð3Þ− � ¼ 0; ½Jð2Þ−α; ~Jαð1Þþ � ¼ 0;

which have the same form as those of the undeformed
model written in terms of ordinary currents.
Lax connection: We define the two vectors

Lαþ ¼ ~Jαð0Þþ þ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

q
~Jαð1Þþ þ λ−2 1þ η2

1 − η2
~Jαð2Þþ

þ λ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

q
~Jαð3Þþ ;

Mα− ¼ Jαð0Þ− þ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

q
Jαð1Þ− þ λ2

1þ η2

1 − η2
Jαð2Þ−

þ λ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

q
Jαð3Þ− ;

where λ is the spectral parameter. Then, the whole set of
equations of motion E ¼ 0 and zero curvature equations
Z ¼ 0 is equivalent to

∂αLαþ − ∂αMα− þ ½M−α; Lαþ� ¼ 0: (4)

One may define an unconstrained vector

Lα ¼ Lþα þM−α;

in terms of which the Eq. (4) becomes an ordinary zero
curvature equation

∂αLβ − ∂βLα þ ½Lα;Lβ� ¼ 0:

The existence of this Lax connection shows that the
dynamics of the deformed action admits an infinite number
of conserved quantities.
Virasoro constraints: It is clear that each term in the

Lagrangian (2) is proportional either to the metric γαβ or
to εαβ. The part of the action proportional to the metric
takes the form

Sγ ¼ − 1

2

�
1þ η2

1 − η2

�
2
Z

dσdτγαβStrðJð2Þα Jð2Þβ Þ; (5a)

¼ − 1

2

�
1þ η2

1 − η2

�
2
Z

dσdτγαβStrð ~Jð2Þα ~Jð2Þβ Þ: (5b)

To obtain this result, the skew symmetry of Rg has been
used. The Virasoro constraints are then found to be

Strð ~Jαð2Þþ ~Jβð2Þþ Þ ≈ 0; StrðJαð2Þ− Jβð2Þ− Þ ≈ 0:

Kappa symmetry: The invariance under κ symmetry is a
characteristic of the Green-Schwarz formulation. We now
want to show that the kappa invariance is essentially
unchanged after deformation. To do this, consider an
infinitesimal right translation of the field, δg ¼ gε, where
the parameter ε takes the form

ϵ ¼ ð1 − ηRgÞρð1Þ þ ð1þ ηRgÞρð3Þ:

The fields ρð1Þ and ρð3Þ, whose expressions will be
determined shortly, respectively take values in fð1Þ and
fð3Þ. Then the variation of the action with respect to g reads

δgS ¼ ð1þ η2Þ2
2ð1 − η2Þ

Z
dσdτStrðρð1ÞP3∘ð1þ ηRgÞðEÞ

þ ρð3ÞP1∘ð1 − ηRgÞðEÞÞ:

We may then use Eq. 3 to write this variation as

δgS ¼ −2 ð1þ η2Þ2
ð1 − η2Þ

Z
dσdτ Strðρð1Þ½Jð2Þ−α; ~Jαð1Þþ �

þ ρð3Þ½ ~Jð2Þþα; J
αð3Þ− �Þ:

In full analogy with the undeformed case (see Ref. [17]),
we take the following ansatz for ρð1Þ and ρð3Þ:
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ρð1Þ ¼ iκð1ÞþαJ
αð2Þ− þ Jαð2Þ− iκð1Þþα;

ρð3Þ ¼ iκð3Þ−α ~Jαð2Þþ þ ~Jαð2Þþ iκð3Þ−α;

where κð1Þþ and κð3Þ− are constrained vectors of respective
gradings 1 and 3. Note that we are using the standard
convention for the real form suð2; 2j4Þ (see for instance
appendix C of Ref. [19]). Then, a short calculation leads to

Strðρð1Þ½Jð2Þ−α; ~Jαð1Þþ �Þ ¼ StrðJαð2Þ− Jβð2Þ− ½ ~Jð1Þþα; iκ
ð1Þ
þβ�Þ;

Strðρð3Þ½ ~Jð2Þþα; J
αð3Þ− �Þ ¼ Strð ~Jαð2Þþ ~Jβð2Þþ ½Jð3Þ−α; iκð3Þ−β �Þ:

At this point, we use the standard property (see Ref. [17])
that the square of an element of grade 2 only contains a
term proportional toW ¼ diagð14;−14Þ and a term propor-
tional to the identity that does not play a role in the case at
hand. We finally obtain

δgS ¼ − ð1þ η2Þ2
4ð1 − η2Þ

Z
dσdτðStrðJαð2Þ− Jβð2Þ− Þ

× StrðW½ ~Jð1Þþα; iκ
ð1Þ
þβ�Þ

þ Strð ~Jαð2Þþ ~Jβð2Þþ ÞStrðW½Jð3Þ−α; iκð3Þ−β �ÞÞ:

This expression comes from the variation of the field g in
the action. It may be compensated by another term coming
from the variation of the metric γ. To determine this
variation we use the result of Eq. (5). We are then led to
choose

δγαβ ¼ 1 − η2

2
StrðW½iκαð1Þþ ; ~Jβð1Þþ � þW½iκαð3Þ− ; Jβð3Þ− �Þ

for the transformation of the metric in order to ensure κ
symmetry.

Conclusion.—The Lagrangian of Eq. (2) is a semisym-
metric space generalization of the one obtained in Ref. [15]
by deforming the symmetric space σ model on F=G. In the
latter case, it was shown that the original FL symmetry is
deformed to a Poisson-Hopf algebra analogue of UqðfÞ.
The same fate is confidently expected for the psuð2; 2j4Þ
symmetry of the AdS5 × S5 superstring. Hence, the q
deformation proposed here generalizes the situation that
holds for the squashed sphere σ model [20,21].
As mentioned in the Introduction, the construction of

the deformed theory relies on the existence of a second
compatible Poisson bracket. The latter is known to be
related [13] to the Pohlmeyer reduction of the AdS5 × S5

superstring [19,22]. In fact, one motivation for deforming
the superstring action comes from the q-deformed S matrix
appearing in this context [23–25], built from the
q-deformed R matrix of Ref. [26], and in terms of which
the corresponding thermodynamic Bethe ansatz equations
are constructed [27,28]. It would, therefore, be very

interesting to make contact between these two
deformations.
The geometric background of the undeformed action

consists of the AdS5 × S5 metric, a constant dilaton and a
nontrivial self-dual 5-form. This constitutes a maximally
supersymmetric background of type IIB supergravity
[29–32]. We have shown that the deformed action is also
invariant under κ symmetry. However, type IIB super-
gravity backgrounds ensure the existence of κ symmetry
[33]. It is, therefore, desirable to explicitly determine the
whole deformed geometry and check that it satisfies the
equations of type IIB supergravity.
Let us end on a more conjectural note by commenting on

the limit η → 1 of the deformed model. The analogous limit
in the case of the deformed SUð2Þ=Uð1Þ σ model corre-
sponds to a SUð1; 1Þ=Uð1Þ σ model [15]. If such a property
were to generalize to the case at hand, we expect that the
cosets AdS5 ≃ SOð4; 2Þ=SOð4; 1Þ and S5 ≃ SOð6Þ=SOð5Þ
would respectively be replaced in this limit by
SOð5; 1Þ=SOð4; 1Þ≃ dS5 and SOð5; 1Þ=SOð5Þ≃ H5.
Such cosets have already been considered in Ref. [34].
This point certainly requires closer investigation, and we
will come back to it from the Hamiltonian point of view
elsewhere.
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