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We show that, within the AdS/CFT correspondence, recent formulations of the information paradox can
be reduced to a question about the existence of certain kinds of operators in the conformal field theory
(CFT). We describe a remarkably simple construction of these operators on a given state of the CFT. Our
construction leads to a smooth horizon, addresses the strong subadditivity paradox, while preserving
locality within effective field theory, and reconciles the existence of the interior with the growth of states
with energy in the CFT. We also extend our construction to nonequilibrium states.
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Introduction.—The past few months have seen an intense
renewal of interest in the information paradox [1–4].
Although the AdS/CFT correspondence [5–7] strongly
suggests that the formation and evaporation of a black
hole should be unitary, several authors have recently argued
that this is inconsistent with a smooth horizon and interior
for the black hole. These arguments can essentially be
summarized as the claim that the conformal field theory
(CFT) does not contain operators that can describe the
interior. In this Letter, we present an explicit and strikingly
simple construction for such operators, which ensures that
they have the right properties on a given state of the CFT
and on its descendants produced by acting on this state with
other light operators.
This construction successfully addresses all the recent

arguments in favor of structure at the black hole horizon.
So, the central thrust of this Letter is to show that if one is
allowed to use different operators to describe the interior
of the black hole in different states of the CFT—this
naturally aligns with the expectation that one cannot define
“background-independent” local observables in a theory of
quantum gravity—then there is no need for firewalls at the
horizon.
Before proceeding to our construction, we briefly

describe the observables that we are interested in. In the
appropriate regime of parameters, the bulk theory of
quantum gravity is approximately local. This means that
the boundary CFT should have operators ϕi

CFTðxÞ, where x
can be interpreted as a bulk point, with the property that
the CFT correlation functions hΨjϕi1

CFTðx1Þ…ϕin
CFTðxnÞjΨi

should be the same as those obtained from effective field
theory on the geometry dual to the state jΨi.
However, these “local” observables have an important

limitation. If we take two points very close jxi − xjj < lpl
or take the number of points n to scale with the central

charge of the CFT, N , then the correlators cease to have a
semiclassical bulk interpretation. [Note that N ∝ P2 in the
supersymmetric SUðPÞ theory.] This is a generic statement
about local observables in quantum gravity, and the reader
should always keep this in mind.
It is well known that one can identify operators in the

CFT that describe the exterior of a bulk black hole, as we
review in Sec. II. In this Letter, we find operators, which
depend on the state jΨi, that describe the interior as well.
After describing this construction for equilibrium states in
Sec. III, we use it to address recent arguments for structure
at the horizon in Sec. IV. We describe how to to extend our
construction to nonequilibrium states in Sec. V.
Bulk local operators from the CFT.—We consider a

CFT on Sd−1 × R, with a large central charge N , in a
regime where it has a gravity dual. We place it in a pure
state jΨi that is expected to be dual to an anti-de Sitter-
Schwarzschild black hole in the bulk. The CFT contains
several light local operators Oiðt;ΩÞ, distinguished by the
index i. The AdS/CFT dictionary tells us that the “single
trace” operators in this set are dual to fields in the bulk.
We start by considering the case where the state jΨi is in

equilibrium. This implies that correlators in this state can be
approximated, at large N , by thermal correlators

hΨjOi1ðt1;Ω1Þ…Oinðtn;ΩnÞjΨi
¼ Z−1

β Trðe−βHOi1ðt1;Ω1Þ…Oinðtn;ΩnÞÞ: (1)

Zβ is the partition function of the CFT at temperature β−1
associated with jΨi, and H is the CFT Hamiltonian. If the
state is charged under a conserved charge Q̂, then we can
associate a chemical potential μ with it, and should replace
βH → βH þ μQ̂ everywhere below.
Under these conditions, it is possible to write down an

explicit operator in the CFT that can be interpreted as this
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bulk local field. We showed in [8], following [9], that this
operator could be written as

ϕi
CFTðt;Ω; zÞ ¼

X
m;n

½Oi
ωn;mfωn;mðt;Ω; zÞ þ H:c:�; (2)

outside the black hole. Here, Oi
ωn;m are the modes of the

local operator on the sphere, and in time, and f is an
appropriately chosen function. In the CFT, (t, Ω, z) are just
labels for the operator, but they have an interpretation as
coordinates in AdSdþ1. This formula can be corrected order
by order in 1=N [10].
We have discretized the frequencies ωn. This can be

done by placing the boundary theory on a lattice, and then
considering a discrete Fourier transform, and another
method is discussed in [11]. Although this discretization
is necessary, its precise details are not relevant, and the the
reader may choose to think of the boundary theory on a
lattice with e

ffiffiffiffi
N

p
¼ eP points in the SUðPÞ theory, which

certainly gives as close an approximation to the continuum
theory as one might desire.
Repeating this analysis for the black hole interior we find

that we require new operators ~Oi,

ϕi
CFTðt;Ω; zÞ ¼

X
m;n

½Oi
ωn;mg

ð1Þ
ωn;mðt;Ω; zÞ

þ ~Oi
ωn;mg

ð2Þ
ωn;mðt;Ω; zÞ þ H:c:�; (3)

where the functions gð1Þ and gð2Þ can be written down
explicitly [8]. The “mirror operators” ~Oi must have the
following important property

hΨjOi1ðt1;Ω1Þ… ~Oj1ðt01;Ω0
1Þ… ~Ojlðt0l;Ω0

lÞ…Oinðtn;ΩnÞjΨi
¼ Z−1

β Tr½e−βHOi1ðt1;Ω1Þ…Oinðtn;ΩnÞ
×Ojlðt0l þ iβ=2;Ω0

lÞ…Oj1ðt01 þ iβ=2;Ω0
1Þ�; (4)

where, as shown, all the analytically continued operators
are moved to the right of the ordinary operators in the trace,
and their ordering is reversed. This equation holds at
large N .
If one can find operators ~Oiðt;ΩÞ that obey (4) in the

CFT then [assuming the consistency of the ansatz (3) in a
CFT state dual to a black hole [11] it is possible to
explicitly compute a correlation function across the hori-
zon. This reduces to a computation in the eternal black hole
of [12] and produces a smooth result. So, the question of
whether the black hole interior can be described within
AdS/CFT is entirely one of finding operators that obey (4)
in the CFT.
Mirror Operators In An Equilibrium State.—We now

find such operators, and use them to address all the recent
arguments on the information paradox.
Consider the set of polynomials in the modes of CFT

operators

Aα ¼
X
N

αðNÞðOi
ωn;mÞNði;n;mÞ; (5)

where αðNÞ are arbitrary coefficients, and the sum runs
over all functions N, with the important restrictions thatX

i;n;m

Nði; n;mÞωn ≤ Emax ≪ N : (6)

This set of polynomials forms a linear space, and we also
bound the number of insertions,

P
Nði; n;mÞ ≤ Kmax, to

limit the dimension of this space: DA ≪ eN .
We consider this set modulo all operator relations in the

CFT. For example, if we have two operators with ½O1;O2� ¼
1 then, of course, the polynomial O1O2 is identified with
O2O1 þ 1. These polynomials can also be thought of as
suitably regularized polynomials of local operators in the
CFT.We exclude the zero modes of conserved currents from
these polynomials and return to them later.
Recalling the restrictions on the possible observables in

quantum gravity that we mentioned above, the most general
set of observables, for which we can expect a semiclassical
bulk interpretation are the expectation values hΨjAαjΨi.
It is important that a generic state jΨi with hΨjHjΨi ¼

OðN Þ also satisfies

AαjΨi ≠ 0; ∀ Aα ≠ 0: (7)

This follows simply because DA ≪ eN , and there are of
order eN states at energyN . In fact, we can even take (7) as
part of a definition of what we mean by a generic state.
Now, we can think of the vector space HΨ ¼ AαjΨi,

formed by acting with all possible polynomials on the state
jΨi. Then (7) tells us that the set of observable polynomials
andHΨ are isomorphicas linearvectorsspaces.Moreover, the
only relevant observables are then hΨjvi, where jvi ∈ HΨ.
We now define the mirror operators ~Oi

n;m by their action
on HΨ

~Oi
ωn;mAαjΨi ¼ Aαe−

βωn
2 ðOi

ωn;mÞ†jΨi: (8)

This simple definition will turn out to have remarkable
properties.
First, note that, since the polynomials form a linear

space, and (8) is also linear, we can equivalently define the
~Oi
n;m operators by their action on a basis of HΨ, which

comprises DA linearly independent vectors. It is always
possible to find a linear operator with any specified action
on a linearly independent set of vectors. So, we can find
operators ~Oi

n;m in the CFT that satisfy (8).
In fact (8) does not uniquely specify ~Oi

n;m, since their
action outside HΨ is unspecified but, as we will show,
this ambiguity is unimportant except in very high order
correlators.
Let us give another, completely equivalent, way of

defining these operators. Consider the antilinear map from
HΨ → HΨ
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SAαjΨi ¼ A†
αjΨi: (9)

Note that S2 ¼ 1 and SjΨi ¼ jΨi. The existence of such a
map follows from the reasoning above. Then the mirror
operators are simply defined by

~Oi
ωn;m ¼ Se−βH

2 Oi
ωn;me

βH
2 S; (10)

This is precisely the map that appears in the Tomita-
Takesaki theory of modular automorphisms of von
Neumann algebras, as we explore in [11].
Let us verify that these operators do satisfy the crucial

relation (4). We find

hΨjOi1
ω1;m1

… ~Oj1
ω0
1
;m0

1
… ~Ojl

ωl
0;m0

l
…Oin

ωn;mn jΨi
¼e−β

2
ðω0

1
þ…ω0

lÞhΨjOi1
ω1;m1

…Oin
ωn;mnðOjl

ωl
0;m0

l
Þ†…ðOj1

ω0
1
;m0

l
Þ†jΨi:
(11)

Here, we use the definition (8) recursively to pass the ~O
operators to the right, and convert them to ordinary
operators in turn. Alternately, the reader may verify this
relation using (10). Fourier transforming back to position
space, taking care that ~Oωn;m has energy −ωn by (8), and
using (1), we find that (4) holds.
Now we turn to two subtleties. First, in proving (11), we

tacitly assumed that products of operators always kept us
within HΨ. If we are considering a very high point
correlator, on the edge of the bound (6), then acting with
the ~O operators repeatedly could take us out of the space
HΨ on which (8) holds. Clearly, these “edge” effects are
important only for very high-point correlators, and we can
make them small enough to be unimportant at any order in
the 1=N expansion, by taking Emax large enough, but still
much smaller than N .
Second, we turn to conserved charges, or the zero modes

of conserved currents. We denote a polynomial in these
charges, including the Hamiltonian, by Qα. If jΨi is an
energy eigenstate, or transforms in a small representation of
the symmetry group, it could be annihilated by the action
of someQα. We generalize (7) to demand that acting by Aγi
generates no further linear dependencies

X
i

AγiQαi jΨi ¼ 0 ⇒ ∃κi ∈ C; s:t:
X
i

κiQαi jΨi ¼ 0:

(12)

As above, we can write any state as a linear combination of
states where Qα acts immediately on jΨi, by commuting it
through the Aγ . We now define the mirror through

~Oi
ωn;mAγQαjΨi ¼ Aγe−

βωn
2 ðOi

ωn;mÞ†QαjΨi: (13)

This ensures that if an operator transforms in some
representation, then its mirror transforms in the conjugate

representation. The action of S can also be suitably
generalized [11].
Obtaining A Smooth Horizon.—Now, we show how the

use of these operators resolves all recent arguments that
suggest the presence of firewalls or fuzzballs at the horizon
of a black hole.
We start with the strong subadditivity paradox [1,4].

Consider three regions of an evaporating black hole: B, just
outside the horizon,E, which is far away, and ~B, just behind
the horizon. The horizon is smooth only if the modes in B
are entangled with the modes in ~B; this is also expressed
by (4). On the other hand, after the Page time [13] of the
black hole, the modes in B must also be entangled with
the modes in E. This creates a seeming paradox with the
strong subadditivity of entropy.
Our resolution—which, we phrase more precisely in

CFT language in [11]—is that the modes in E are not
independent of the modes in ~B. Our construction allows
us to express this lack of independence precisely in terms of
local operators: for any function fðxÞ localized on a nice
slice in region ~B , we can find a function gðxÞ, localized on
the same nice slice in region E, so that

C¼
�Z

ϕi
CFTðxÞfðxÞddx;

Z
ϕi
CFTðyÞgðyÞddy

�
≠ 0: (14)

We emphasize that, in our construction, the overlap
between the degrees of freedom inside the black hole, and
those outside, which we have posited to resolve the strong
subadditivity paradox for evaporating black holes, is also a
feature of big black holes in AdS. This is a precise version
of black hole complementarity [14] ,but it introduces a
fresh question: the nonzero commutator between spacelike
separated operators seems to violate locality.
Our construction resolves this by preserving locality in

the following effective sense: the commutator C, or even its
powers like C†C, can never be detected in low-point
correlators because

hΨjAα1C
†CAα2 jΨi ¼ 0; (15)

as long as the product polynomial Aα1 Aα2 also satisfies the
restriction (6). This follows because, using (3), we can
translate (15) into a statement about the commutators of ~Oi

with Oi. Even though this commutator does not vanish as
an operator, we proved above that it is undetectable within
low-point correlators. This is obvious from substituting
the commutator in (11), and also follows directly from (8).
This commutator can be detected in a correlator where
the number of points scales with N , but as advertised, we
should not expect semiclassical bulk locality to hold in any
sense for such correlators.
Next, consider the “lack of a left-inverse” paradox [2].

With G ¼ hΨj½Oi
ωn;m; ðOi

ωn;mÞ†�jΨi, define the shorthand
operators
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b ¼ G−1
2Oi

ωn;m; b† ¼ G−1
2ðOi

ωn;mÞ†;
~b ¼ G−1

2 ~Oi
ωn;m;

~b† ¼ G−1
2ð ~Oi

ωn;mÞ†. (16)

We note that

½ ~b; ~b†�AαjΨi ¼ Aα½b; b†�jΨi ¼ AαjΨi þ OðN −1Þ: (17)

However, since ½H; ~b†� ¼ −ωnb†, we cannot have
½ ~b; ~b†� ¼ 1 as an operator equation. This would have
required ~b† to have a left inverse, which it cannot since
it maps states of higher energy to lower energy states, and
the number of states grows monotonically with energy.
In our case, it is clear that ½ ~b; ~b†� ≠ 1, since (17) holds

only when Aα satisfies (6). So ~b† can have null vectors.
These operators have a commutator that is effectively 1
when inserted in any low-point correlator but differs from 1
as an operator. This difference is only detectable in a
correlator where the energy of insertions scales with N .
Finally, consider the number operator measured by the

infalling observer.

Na ¼ ð1 − e−βωnÞ−1½ðb† − e−βωn
2 ~bÞðb − e−βωn

2 ~b†Þ
þ ð ~b† − e−βωn

2 bÞð ~b − e−βωn
2 b†Þ�: (18)

We see immediately by virtue of (8) that NajΨi ¼ 0.
The argument of [3] that Na ≠ 0 in a typical state can
basically be summarized as follows. For generic operators
b, b†, ~b, ~b† we do not expect ð ~b − e−ðβωn=2Þb†ÞjΨi ¼
ðb − e−ðβωn=2Þ ~b†ÞjΨi ¼ 0 to hold, since there is no
“energetic” reason for it. However, our operators are
precisely selected in a state-dependent manner to satisfy
this relation, and this undercuts the argument.
In a different language, this argument that

state-independent operators cannot be “entangled” in a
generic state also underpins the “theorem” [4] that small
corrections cannot unitarize radiation. Our state-dependent
construction allows correlators outside and across the
horizon to be very close to their effective field theory
expectations, within the unitary framework of the CFT.
Nonequilibrium Scenarios.—We can already study time-

dependent correlation functions on an equilibrium state.
This includes problems where the equilibrium black hole
background is excited by some sources. In such a setting,
since NaAαjΨi ≠ 0, we see that the infalling observer
would notice particles. However, now we turn to a setting
where the base state onwhichwe define themirror operators
is out of equilibrium.
An equilibrium state is defined [11] as a state

where if we consider χαðtÞ ¼ hΨjeiHtAαe−iHtjΨi then
ð1=TÞ R T

0 jχαðtÞ − χαð0Þj is exponentially small in N ,
where the time T is taken to be the inverse of the smallest
difference in our discrete frequencies: T ¼ ðωnþ1 − ωnÞ−1.
We consider a class of “near-equilibrium” states pro-

duced by exciting an equilibrium state by turning on a

source for some CFToperators. More precisely, where Aα is
a Hermitian polynomial, we consider states

jΨ0i ¼ UjΨi; U ¼ eiAα ; (19)

Clearly, if we wanted to define the mirror operators by
using jΨ0i as a base state, we cannot just use (8). Instead,
we “strip” off the excitationU, and use the mirror operators
on the equilibrium state jΨi.
In fact, we can show that given a near-equilibrium state

jΨ0i, it can be written uniquely in the form (19): the unitary
U such that U†jΨ0i is in equilibrium is fixed by the state
jΨ0i itself. Intuitively this is clear. Once we have found a
unitary that takes jΨ0i to an equilibrium state, turning
on any other source would only take it out of equilib-
rium again.
So, given a near-equilibrium state jΨ0i, we define the

mirror operators by

~Oi
ωn;mAαjΨ0i ¼ AαUe−βωn

2 ðOi
ωn;mÞ†U†jΨ0i: (20)

Equivalently, we can write

~Oi
ωn;m ¼ SUe

βH
2 Oi

ωn;me
−βH

2 U†S; (21)

for near-equilibrium states.
It is clear that this prescription simply converts corre-

lators on jΨ0i into correlators on jΨi with an additional
excitation U. Since these correlators correctly reproduce all
kinds of correlators on a black hole in equilibrium, the
correlators on jΨ0i meet the expectations for semiclassical
correlators in an excited state of the black hole. This
successfully addresses the “frozen vacuum” argument [15].
Conclusions And Discussion.—In this Letter, we have

argued that AdS/CFT can describe the interior of the black
hole and predicts a smooth horizon, precisely in line with
semiclassical expectations. The principle underlying this
Letter is that one should expect a good semiclassical
interpretation only for correlation functions, where the
total energy of the operator insertions does not scale withN .
A superobserver in the CFT may measure more complicated
correlators, but these do not necessarily have a local bulk
description.
We constructed mirror operators that depended on the

state of the theory, and behaved correctly when evaluated
on this state, or its descendants produced by acting on it
with light operators. The arguments of [1–3] suggest that
such state-dependent operators are necessary to describe
the interior. This feature also appeared in our previous work
[8] and in [16]. This is not unexpected in light of the belief
that it is impossible to localize operators in quantum gravity
in a background-independent manner.
Given the surprising power of state-dependent operators

in resolving every one of the recent issues surrounding the
information paradox, it is clear that this issue of state
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dependence in quantum gravity is an important area for
further investigation.
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