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Stochastic pumps are models of artificial molecular machines which are driven by periodic time variation
of parameters, such as site and barrier energies. The no-pumping theorem states that no directed motion is
generated by variation of only site or barrier energies [S. Rahav, J. Horowitz, and C. Jarzynski, Phys. Rev.
Lett. 101, 140602 (2008)]. We study stochastic pumps of several interacting particles and demonstrate that
the net current of particles satisfies an additional no-pumping theorem.
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Molecular motors and machines are an essential com-
ponent in living organisms. They perform tasks such as
carrying loads, contracting muscles and many other crucial
functions [1]. Many research groups are actively trying to
venture beyond the motors found in nature, aiming to
design and synthesize artificial molecular machines [2–6].
Since artificial machines can be designed, it is possible to

operate them using new driving mechanisms which are not
found in biological motors and machines. One such driving
mechanism is the rectification of periodic time variation of
external parameters. Due to the similarity with everyday
pumps such systems are often referred to as stochastic
pumps. Stochastic pumps are therefore closely related to
thermal ratchets [7], but the term is more commonly used
for systems with a discrete set of coarse-grained states. The
dynamics of stochastic pumps have been investigated
extensively in recent years [8–13]; see also the reviews
by Sinitsyn [14] and Astumian [15] for an overview.
Motivated by a beautiful experiment on catananes [16],

and by work focused on an adiabatically driven model [17],
a no-pumping theorem (NPT) for stochastic pumps was
found [18]. This nonadiabatic result identifies driving
mechanisms which will not lead to directed motion. In a
parallel development, Chernyak and Sinitsyn [19] showed
how to generalize the NPT to account for the topology of
the network of transitions between states. Due to its simple
structure, and somewhat nonintuitive result, the NPT has
generated considerable interest [20–24]. All this body of
work was focused on the stochastic dynamics of a single
particle. The aim of this letter is to investigate the validity of
the NPT for many particle stochastic pumps, where several
interacting particles jump between a set of binding sites.
We demonstrate that an NPT holds for this many particle
system for any local interaction.
Single particle NPT.—Consider a system which makes

sudden transitions between a set of coarse-grained states,
labeled by α; β; γ;… The transitions are assumed to be
Markovian and are characterized by transition rates
Rβα ≥ 0 (for α ≠ β). We assume that the system is

connected, namely that it is possible to reach any state
from an arbitrary initial state in a finite number of
transitions. We furthermore assume that when Rβα > 0
then also Rαβ > 0 (microreversibility).
The probability pαðtÞ to find the system in state α

evolves according to a master equation

dp
dt

¼ Rp; (1)

where the diagonal elements ofR satisfyRαα ¼ −Pσ≠αRσα,
thereby ensuring probability conservation.
It is often helpful to represent the jump process using a

graph. The nodes of this graph correspond to the coarse-
grained states, also referred to as sites. The links represent
the possible (bidirectional) transitions between sites. An
example of a graph representing a 4 site system with 5
possible transitions is depicted in Fig. 1(a).
The NPT was derived for thermally activated transitions

with rates Rβα ¼ k exp ½ðEα − BαβÞ=T�, where Eα are site
energies and Bαβ are barrier energies, while T is the

FIG. 1 (color online). The graph representation of stochastic
pumps with 4 sites and 5 bidirectional transitions: (a) the single
particle pump, (b) and (c) the product graph representing a system
with 2 and 3 particles, respectively. The nodes of the product
graphs correspond to many particle states such as (α, γ, α).
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temperature of the environment. This parametrization
of rates naturally describes certain molecular machines
[3,16], but can be used for any system satisfying detailed
balance. When the set of parameters fEα; Bαβg do not
vary with time the system relaxes to an equilibrium
distribution with pðeqÞ

α ∝ e−Eα=T . Note that detailed
balance, Rβαp

ðeqÞ
α ¼ Rαβp

ðeqÞ
β , requires symmetric barriers,

Bαβ ¼ Bβα.
When the system is driven by a time periodic variation of

the site and barrier energies, with period τ, Floquet theory
states that the system settles into a time periodic asymptotic
state [25]. In what follows we always assume that the
system is in this asymptotic state.
During a cycle of the driving the probability can slosh

back and forth between sites. As a result, the existence or
lack thereof of net directed motion is determined by the
integrated fluxes

ϕαβ ≡
I

JαβðtÞdt; (2)

where JαβðtÞ ¼ RαβðtÞpβðtÞ − RβαðtÞpαðtÞ is the momen-
tary probability current flowing from β to α. The integral
over time is taken over a full period of the driving cycle.
A nonvanishing ϕαβ for any pair of α, β means that the
variations of parameters has resulted in some directed
motion. For the catenanes of [16] the directed motion
corresponds to rotation of the smaller ring like molecule
along the larger molecule. More generally this directed
motion will express the existence of some physical effect
which can be utilised.
The NPT [18] states that one needs to vary both the

barrier and site energies to generate directed motion. In
particular, when one varies only fEαðtÞg, while the fBαβg
are kept fixed, no directed motion is generated. This is
nonintuitive, since it seems natural that one should be able
to induce directed motion by designing a driving cycle in
which the most energetically favourable site changes in a
cyclic way, for example between sites α → β → δ → α in
Fig. 1(a).
Many particle stochastic pumps.—Consider a set of N

distinguishable particles which make stochastic jumps
between a set of sites. The state of this many particle
system is described by specifying the location of each
particle, X ≡ ðx1; x2;…; xNÞ, where xi denotes the site in
which the ith particle resides. For example, in the 4 site
system depicted in Fig. 1(a), X ≡ ðγ; δÞ describes a state in
which particle 1 (2) is in site γ ðδÞ respectively.
Transitions between many particle states are made via

jumps of a single particle. Instantaneous jumps of several
particles are neglected. We therefore adopt a notation
that matches the nature of transitions. Let Xjk ≡
ðx1; x2;…; xk−1; xkþ1…xNÞ denote the location of all par-
ticles except the kth one. Then Xjk; xk → x0k conveniently

labels the transition out of X in which the kth particle jumps
to state x0k.
The fact that only single particle jumps connect the

many particle states means that the graph representing the
many particle stochastic pump is constructed by a Cartesian
product of single particle graphs [26]. Figures 1(b) and 1(c)
depict the many particle (or product) graphs corresponding
to two or three particles residing in the sites of Fig. 1(a).
It is clear that when N ≫ 1 this product graph becomes
quite complicated.
Which transition rates should one expects in this type of

many particle system? For noninteracting particles the total
energy of the system is

EðXÞ ¼
X
σ

nσðXÞEσ; (3)

where the summation is over the sites, and nσðXÞ is the
number of particles residing in site σ. For any transition we
can also assign a many particle energy barrier. The barrier
for the transition Xjk;α → β is

BðX0;XÞ ¼ EðXjkÞ þ Bβα. (4)

The nonvanishing transition rates are then given by

RX0;X ¼ RXjk;xk→x0k
¼ k exp ½ðEðXÞ − BðX0;XÞÞ=T�: (5)

It is easy to verify that in absence of interactions this rate
is given by k exp ½ðEα − BβαÞ=T�, just like a single particle
pump. The resulting dynamics of a pump with N non-
interacting particles is that of N copies of a single particle
pumps, see Sec. I of the Supplemental Material [27].
Interactions will modify the expressions for the many
particle energies and barriers. We consider short range,
local, interactions, so that a particle is only affected by
particles residing at the same site. Within the same spirit, a
particle which “crosses the barrier” between sites does not
interact with other particles. The transition rates are then
given by (5) with

EðXÞ ¼
X
σ

nσðXÞEσ þUσðnσðXÞÞ; (6)

BðX0;XÞ ¼
X
σ

nσðXjkÞEσ þ UσðnσðXjkÞÞ þ Bβα; (7)

where BðX0;XÞ¼BðX;X0Þ. We note that EðXÞ−BðX0;XÞ¼
Eα−Bβαþ ~UαðnαÞ with ~UαðnαÞ≡UαðnαÞ −Uαðnα − 1Þ,
recasting the rates in terms of single site quantities. When
fEαg, fUαg do not vary in time the system relaxes to an
equilibrium distribution with pðeqÞðXÞ ∝ e−EðXÞ=T .
Since the energy of a single particle in a site is already

accounted for, we must take Uαð0Þ ¼ Uαð1Þ ¼ 0.
Otherwise, we allow the interaction to take any value,
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implicitly assuming that it is not strong enough to desta-
bilize or create sites.
Many particle fluxes and particle currents.—We first

examine the immediate application of the NPT to this many
particle pump. The pump is driven by periodic variation of
fEαðtÞg and fBαβðtÞg. The NPT of [18] states that no
directed motion is generated if either all many particle
energies EðXÞ, or alternatively all the BðX0;XÞ are time
independent. We emphasize that this result is not very
useful, since (i) the expression for BðX0;XÞ mixes site
energies and barriers, and (ii) the integrated flux ϕXjk;xk→x0k
is not the observable one typically wishes to study, since it
has the interpretation of the net probability flux that particle
k jumps from xk to x0k conditioned on Xjk.
It is much more natural to use the net current of particles

flowing between two given sites as a measure of directed
motion. This current is simply the sum of all many particle
fluxes corresponding to a given transition

Φσ→σ0 ¼
XN
k¼1

X
Xjk

ϕXjk;σ→σ0 : (8)

The main result of this letter is that the integrated particle
currents (8) satisfy an additional NPT which is expressed
in terms of the (single particle) site energies and barriers.
It states that both fEαg and fBαβg need to be periodically
varied in time in order to generate directed particle
currents (Φσ→σ0 ≠ 0).
Derivation of NPT.—When the fEαg are time indepen-

dent the system relaxes to an equilibrium state with no
currents. We therefore focus on the case of time indepen-
dent barriers and time dependent energies. One of the
derivations of the single particle NPT, from Mandal and
Jarzynski [23], is based on incompatibility of two sets of
equations, termed conservation laws and cycle equations.
This graph based approach, which we employ here, will
highlight the difference between the single particle graph,
such as the one in Fig. 1(a), and the many particle product
graph. The derivation below is based on equations which
hold on the much simpler one particle graph.
The first set of equations expresses conservation laws.

For the many particle system the master equation can be
rewritten as dPðXÞ=dt ¼ −PX0≠XJX0;X. The periodicity of
PðX; tÞ can be used to obtain an equation 0 ¼ P

X0≠XϕX0;X
for any state X. To derive equations which constrain the
particle currents we examine the density of particles at the
different sites

ρσ ≡
XN
k¼1

X
Xjk

Pðx1; x2;…; xk−1; σ; xkþ1…xNÞ. (9)

We note that periodicity of P implies periodicity of ρ. This
leads to the conservation laws,

X
σ0≠σ

Φσ→σ0 ¼ 0; (10)

expressing the fact that ρ changes through particle currents.
Eq. (10) is what one would naively guess, but it can also
be derived from the conservation laws for many particle
probabilities by explicitly performing the sum (9), see
Sec. II of the Supplemental Material [27].
The second set of equations are cycle equations, defined

on closed cycles of transitions on the graph representing
the system. Let X00 → X → X0 denote two consecutive
transitions, such that in the first the ith particle jumps
from x00i to xi, while in the second the jth particle makes
the xj → x0j jump. We wish to examine the expression

e
Bx00

i
;xi
=T
JX;X00 þ e

Bx0
j
;xj
=T
JX0;X, where we crucially use the

single particle barriers. Our goal is to see when a sum of this
form over a closed cycle will vanish. We focus on the two

terms proportional to PðXÞ, given by,−eBx00
i
;xi
=T
RX00;XPðXÞþ

e
Bx0

j
;xj
=T
RX0;XPðXÞ ¼ ½hðxjÞ − hðxiÞ�PðXÞ, with hðαÞ≡

exp ½ðEα þ ~UαðnαÞÞ=T�. This combination does not depend
on the barriers. This is a result of the symmetry of the
barriers, which follows from detailed balance [23].
It is clear that the terms cancel when xi ¼ xj. Notably,
they need not cancel when consecutive transition involve
particle entering one site and then another particle leaving a
different site. As a result not all the cycles on the product
graph have cycle equations with single particle barriers as
factors.
We now focus on a particular type of cycles, in which a

given particle makes the transitions while the rest are
essentially spectators. Lets assume that the kth particle
makes the transitions α1 → α2 → …αL → α1, closing a
cycle on the corresponding single particle graph. In this
case the sum discussed above has canceling terms, and

XL
i¼1

eBαiþ1 ;αi
=TJXjk;αi→αiþ1

¼ 0 (11)

for any k;Xjk. (Here αLþ1 ¼ α1) This equation holds even
when the barriers vary with time.
For time independent barriers an integration of (11) over

a period gives an equation for integrated fluxes. Moreover,
since the same barriers appear for different k’s, summation
over k;Xjk gives

XL
i¼1

eBαiþ1 ;αi
=TΦαi→αiþ1

¼ 0: (12)

An equation of this type is valid for any closed cycle of
transitions on the single particle graph.
We have shown that the integrated particle currents

satisfy two sets of equations, the conservation laws (10),
and the cycle equations (12). Both are defined using the
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nodes and links of the single particle graph [e.g. Fig. 1(a)]
regardless of the number of particles. The argument of [23],
which was developed for single particle stochastic pumps,
can be applied to Eqs. (10) and (12). The two sets of
equations are incompatible and the only solution is
Φα→β ¼ 0. We conclude that the Φα→β satisfy an NPT:
One needs to vary both the single particle barriers, fBβαg,
and site energies, fEαg, to generated nonvanishing inte-
grated particle currents. The interaction clearly plays a
role similar to the site energies and therefore one could
conceivably generate directed particle currents by varying
the interaction and barriers in time.
Illustrative example.—To illustrate our results we have

investigated the system represented by Fig. 1 numerically.
The system was driven using

EiðtÞ ¼ −2þ cos

�
2π

τ

�
tþ i − 1

4

��
; (13)

where i ¼ 1 corresponds to α, 2 corresponds to β, etc.
The energy barriers were Bαβ ¼ −0.3, Bβγ ¼ 0, Bγα ¼ 1,
Bαδ ¼ 0.2, and Bγδ ¼ −0.1. When both energies and
barriers were varied in time (dashed line in Fig. 2)
BαβðtÞ ¼ cos ½ð2π=τÞðtþ 0.11Þ�, while the rest of the
barriers were unchanged. The interaction were taken to
be Uð2Þ ¼ ln 2 and Uð3Þ ¼ ln 3.
Figure 2 compares the integrated particle currents,

ΦαβðtÞ≡ R
t
0 Jαβðt0Þdt0, for a pump with 1, 2, and 3 particles.

For time independent barriers the integrated particle cur-
rents vanishes after a full period, as predicted by the NPT.
(For one particle this is the NPT of [18].) The dashed curve
demonstrates that directed motion is generated when both
barriers and site energies are varied.

Figure 3 depicts the integrated many particle probability
fluxes corresponding to the β → δ transition (fixed
barriers). It is clear the ϕ’s need not vanish after full
period, even when the NPT holds for the net particle
currents Φσ→σ0 (such as the dashed line in Fig. 3). This
expresses the fact that not all cycles on the product graph
have cycle equations.
Summary.—We have studied stochastic pumps with

several interacting particles and found that the net particle
current satisfies an NPT. We emphasize the NPT of [18]
would give a condition on variation of many particle
parameters fE;Bg while here the condition uses the more
natural site parameters fE;Bg.
Interactions in stochastic pumps are rarely considered.

In [28] an open system with interacting particles was
studied, and the large deviation function was shown to
be equivalent to that of a noninteracting system when
branching ratios were time independent. The two papers
deal with different setups. Our stochastic pumps conserve
the number of particles and the NPT is not asymptotic in
time. Nevertheless, in both systems a simplification was
achieved for time independent branching ratios. (Here for
particles leaving the same site.) This hints that there is an
underlying structure in such interacting systems which
merits further study.
Weakly coupled triple quantum dots [29] offer a possible

experimental realization of interacting particles obeying
stochastic dynamics, especially when the temperature is
larger than the mean level spacing. The system can be
controlled by gate voltages, although the transition rates
may differ from those considered here. A system of several
colloidal particles in water offer another natural realization.
Holographic techniques allow us to create a controllable
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FIG. 2 (color online). Time integrated particle currents for 1, 2,
and 3 particles between sites β → α. Solid and dotted lines
correspond to driving cycles with time independent barriers. The
dashed line depicts the integrated current when one of the barriers
is also varied in time.
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potential landscape [30,31] for the colloids, including one
composed of several adjacent traps. Moreover, particles in
the same trap interact sterically.
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