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We describe how sideband cooling techniques may be applied to large spin ensembles in magnetic resonance.
Using theTavis-Cummingsmodel in thepresenceof aRabi drive,we solve aMarkovianmaster equationdescribing
the joint spin-cavity dynamics to derive cooling rates as a function of ensemble size. Our calculations indicate that
the coupled angular momentum subspaces of a spin ensemble containing roughly 1011 electron spins may be
polarized in a time many orders of magnitude shorter than the typical thermal relaxation time. The described
techniques should permit efficient removal of entropy for spin-based quantum information processors and fast
polarization of spin samples. The proposed application of a standard technique in quantum optics to magnetic
resonance also serves to reinforce the connection between the two fields,which has recently begun to be explored in
further detail due to the development of hybrid designs for manufacturing noise-resilient quantum devices.
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Efficient removal of entropy from a quantum system is
essential for the development of robust quantum technol-
ogies and devices. High purity quantum states that may be
quickly initialized and reset are necessary for the applica-
tion of quantum error correcting codes to suppress and
mitigate the effects of noise and errors that naturally occur
in quantum information processors, sensors, and commu-
nication devices [1]. For spectroscopic applications, the
signal-to-noise ratio increases significantly with state
purity, allowing for the detection of small spin ensembles.
A spin ensemble may be naively prepared in a pure state

by simply moving to low temperatures, where thermal
fluctuations are not energetic enough to cause significant
excitation out of the ground state. However, the required
temperatures are often impractical to obtain or require
sophisticated and expensive equipment. Additionally, the
time required for the spin system to reach thermal equilibrium
with the environment—the energy relaxation time, T1—often
becomes very long at low temperatures, limiting the rate at
which spin resets and signal averaging may be applied [2].
A variety of techniques for removing entropy from a

quantum system are commonly used, including dynamic
nuclear polarization [2,3], algorithmic cooling [4], optical
pumping [5], laser cooling [6–8], and microwave cooling
[9–11], among others. Recently, it was demonstrated that
superconducting qubits may be prepared in an arbitrary pure
state through sideband cooling by a high quality factor (high-
Q) cavity [12,13]. We discuss in this work how similar
microwave cooling techniques should also be applicable to
ensemble spin systems in magnetic resonance, despite the
relatively small coupling between the cavity and a single
spin. In particular, we present a theoretical model for how a
high-Q resonator (cavity) may be used to actively drive each

coupled angular momentum subspaces of an ensemble spin
system to a state with purity equal to that of the cavity on a
time scale significantly shorter than the thermal T1 of the
spins. Our model is motivated by recent studies that describe
magnetic resonance in terms of quantum optics (for example,
[14–19]).
The ability to reduce the effective T1 time of a spin

ensemble by simply applying a detuned microwave drive
provides an important tool for error correcting spin-based
quantum information processors (see, for example, [20–22]
and references therein) and should also find applications in
spectroscopy by permitting faster signal averaging. These
techniques may also find use in enhancing quantum
memories for microwave photons based on coupling spin
ensembles to superconducting devices (see, for example,
[23–27] and references therein).
We consider an inductively driven ensemble of non-

interacting spin-1=2 particles quantized in a large static
magnetic field and magnetically coupled to a high-Q cavity.
In the presence of the drive the spins interact with the cavity
via coherent radiative processes and may be treated quan-
tum mechanically as a single collective magnetic dipole
coupled to the cavity [28]. In analogy to quantum optics, we
describe the spin-cavity dynamics as being generated by the
Tavis-Cummings (TC) Hamiltonian [29,30]. Assuming a
linearly oscillating control field resonant with the Larmor
frequency of the spins, the spin-cavity Hamiltonian is given
by H ¼ H0 þHRðtÞ þHI, with

H0 ¼ ωca†aþ ωsJz; (1)

HRðtÞ ¼ 2ΩR cosðωstÞJx; (2)
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HI ¼ 2gða† þ aÞJx; (3)

where a†ðaÞ are the creation (annihilation) operators
describing the cavity, ΩR is the strength of the drive field
(Rabi frequency), ωc is the resonant frequency of the
cavity, ωs is the Larmor resonance frequency of the spins,
and g is the coupling strength of the cavity to a single
spin in the ensemble in units of ℏ ¼ 1. Here we have
used the notation that μ0Jα ≡PNs

j¼1 σ
ðjÞ
α =2 are the total

angular momentum spin operators for an ensemble of
Ns spins.
The state-space V of a spin ensemble of Ns identical

spins may be written as the direct sum of coupled angular
momentum subspaces V ¼ ⨁Ns=2

J¼j0
V⊕nJ
J where j0 ¼ 0ð1=2Þ

if Ns is even (odd). VJ is the state space of a spin-J particle
with dimension dJ ¼ 2J þ 1, and there are nJ degenerate
subspaces with the same total spin J [31]. Since the TC
Hamiltonian has a global SU(2) symmetry it will not couple
between subspaces in this representation. The largest sub-
space in this representation is called the Dicke subspace
and consists of all totally symmetric states of the spin
ensemble. It corresponds to a system with total angular
momentum J ¼ Ns=2. The TC Hamiltonian restricted to
the Dicke subspace is known as the Dicke model [32] and
has been studied extensively for quantum optics (for a
recent review, see [33]).
The eigenstates of H0 are the tensor product of

photon-number states for the cavity and spin states of
collective angular momentum of each total-spin
subspace in the Jz direction: jni c jJ;mzi s. Here
n ¼ 0; 1; 2;…, mz ¼ −J, −J þ 1;…; J − 1, J, and J
indexes the coupled angular momentum subspace VJ.
The collective excitation number of the joint system
for each subspace is given by Nex ¼ a†aþ ðJz þ JÞ.
The interaction term HI commutes with Nex, and hence
preserves the total excitation number of the system. It
drives transitions between the state jni c jJ;mzi s and
states jnþ 1i c jJ;mz − 1i s and jn − 1i c jJ;mz þ 1i s

at a rate of
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ −mzðmz − 1Þp

andffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ −mzðmz þ 1Þp

, respectively.
After moving into a rotating frame defined by

H1 ¼ ωsða†aþ JzÞ, the spin-cavity Hamiltonian is trans-
formed to

~Hð1Þ ¼ δωa†aþΩRJx þ gða†J− þ aJþÞ; (4)

where δω ¼ ωc − ωs is the detuning of the drive from
the cavity resonance frequency and we have made the
standard rotating wave approximation (RWA) to remove
any time-dependent terms in the Hamiltonian [2].
If we now move into the interaction frame of

H2 ¼ δωa†aþΩRJx, the Hamiltonian transforms to

~Hð2ÞðtÞ ¼ H0ΩR
ðtÞ þH−ΩR

ðtÞ þHþΩR
ðtÞ;

H0ΩR
ðtÞ ¼ gðe−iδωtaþ eiδωta†ÞJx;

H−ΩR
ðtÞ ¼ ig

2
ðe−iðδω−ΩRÞtaJðxÞþ − eiðδω−ΩRÞta†JðxÞ− Þ;

HþΩR
ðtÞ ¼ ig

2
ðe−iðδωþΩRÞtaJðxÞ− − eiðδωþΩRÞta†JðxÞþ Þ; (5)

where JðxÞ� ≡ Jy � iJz are the spin-ladder operators in the
x basis.
In analogy to Hartmann-Hahn matching in magnetic

resonance cross-relaxation experiments [34–36] for δω > 0
we may set the cavity detuning to be close to the Rabi
frequency of the drive, so that Δ ¼ δω −ΩR is small
compared to δω. By making a second RWA in the
interaction frame of H2, the interaction Hamiltonian
reduces to theH−ΩR

flip-flop exchange interaction between
the cavity and spins in the x basis:

HIðtÞ ¼
ig
2
ðe−iΔtaJðxÞþ − eiΔta†JðxÞ− Þ: (6)

This RWA is valid in the regime where the detuning and
Rabi drive strength are large compared to the time scale, tc,
of interest (δω, ΩR ≫ 1=tc, [37]). From here we will drop
the (x) superscript and just note that we are working in the
Jx eigenbasis.
Isolating the spin-cavity exchange interaction allows

efficient energy transfer between the two systems, permit-
ting them to relax to a joint equilibrium state in the
interaction frame of the control field. The coherent
enhancement of the ensemble spin-cavity coupling—
similar to the enhancement of the vacuum Rabi frequency
for atomic ensembles, but not restricted to the single-
excitation manifold [38]—enhances spin polarization at a
rate that may exceed the thermal relaxation rate.
We note that the spin-cavity exchange coupling also

exists in the absence of the Rabi drive, and theoretically
permits cooling of the spin system by matching the
resonance frequency of the spin system to the cavity
resonance. However, this process is thermally driven,
and thus corresponds to a set of incoherent radiative
processes that may not be described by a single
Hamiltonian [28]. This Purcell effect in magnetic resonance
systems has been previously noted and is normally small
enough to be neglected [39,40].
To model the cavity-induced cooling of the spin system

we use an open quantum system description of the cavity
and spin ensemble. The joint spin-cavity dynamics may be
modeled using the time-convolutionless (TCL) master
equation formalism [41], allowing the derivation of an
effective dissipator acting on the spin ensemble alone.
Since the spin-subspaces VJ are not coupled by the TC
Hamiltonian, the following derivation holds for all values
of J in the state-space factorization.
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The evolution of the spin-cavity system is described by
the Lindblad master equation

d
dt

ρðtÞ ¼ LIðtÞρðtÞ þDcρðtÞ; (7)

where LI is the superoperator LIðtÞρ ¼ −i½HIðtÞ; ρ�
describing evolution under the interaction Hamiltonian
(6), and Dc is a dissipator describing the quality factor
of the cavity phenomenologically as a photon amplitude
damping channel [42]:

Dc ¼
κ

2
ðð1þ n̄ÞD½a� þ n̄D½a†�Þ; (8)

where D½A�ðρÞ ¼ 2AρA† − fA†A; ρg, n̄ ¼ tr½a†aρeq� char-
acterizes the temperature of the bath, and κ is the cavity
dissipation rate (∝ 1=Q). The expectation value of the
number operator at equilibrium is related to the temper-
ature, Tc, of the bath by

n̄ ¼ ðeωc=kBT − 1Þ−1⇔Tc ¼
ωc

kB

�
ln

�
1þ n̄
n̄

��−1
; (9)

where kB is the Boltzmann constant.
The reduced dynamics of the spin-ensemble in the

interaction frame of the dissipator (8) is given to second
order by the TCL master equation [43]:

d
dt
ρsðtÞ¼

Z
t−t0

0

dτ trc½LIðtÞeτDcLIðt− τÞρsðtÞ⊗ ρeq�; (10)

where ρsðtÞ ¼ trc½ρðtÞ� is the reduced state of the spin-
ensemble and ρeq is the equilibrium state of the cavity.
Under the condition that κ ≫ g

ffiffiffiffiffiffi
Ns

p
, the master equa-

tion (10) reduces to

d
dt

ρsðtÞ ¼
g2

4

Z
t−t0

0

dτe−κτ=2

× ðcosðΔτÞDsρsðtÞ − sinðΔτÞLsρðtÞÞ; (11)

where

Ds ¼ ð1þ n̄ÞD½J−� þ n̄D½Jþ�; (12)

Lsρ ¼ −i½Hs; ρ�; (13)

Hs ¼ ð1þ n̄ÞJþJ− − n̄J−Jþ (14)

are the effective dissipator and Hamiltonian acting on the
spin ensemble due to coupling with the cavity.
Under the assumption that κ ≫ g

ffiffiffiffiffiffi
Ns

p
we may take the

upper limit of the integral in (10) to infinity to obtain the
Markovian master equation for the driven spin ensemble:

d
dt

ρsðtÞ ¼
�
ΩsLs þ

Γs

2
Ds

�
ρsðtÞ; (15)

where

Ωs ¼ − g2Δ
κ2 þ 4Δ2

; Γs ¼
g2κ

κ2 þ 4Δ2
: (16)

Here Ωs is the frequency of the effective Hamiltonian and
Γs is the effective dissipation rate of the spin-system [37].
We consider the evolution of a spin state that is diagonal

in the coupled angular momentum basis, ρðtÞ ¼P
J

P
J
m¼−J PJ;mðtÞρJ;m. Here the sum over J is summing

over subspaces VJ, and PJ;mðtÞ ¼ hJ;mj ρðtÞ jJ;mi is the
probability of finding the system in the state ρJ;m ¼
jJ;mihJ;mj at time t. In this case the master equation (15)
reduces to a rate equation for the state populations:

d
dt

PJ;mðtÞ ¼ ΓsðAJ;mþ1PJ;mþ1ðtÞ þ BJ;mPJ;mðtÞ
þ CmJ−1PmJ−1ðtÞÞ; (17)

where

AJ;m ¼ ð1þ n̄Þ½JðJ þ 1Þ −mðmJ − 1Þ�; (18)

CJ;m ¼ n̄½JðJ þ 1Þ −mðmJ þ 1Þ�; (19)

BJ;m ¼ −ðAm þ CmÞ: (20)

Defining P⃗JðtÞ ¼ ðPJ;−JðtÞ;…; PJ;JðtÞÞ, we obtain the
following matrix differential equation for each subspace
VJ:

d
dt

P⃗JðtÞ ¼ ΓsMJP⃗JðtÞ; (21)

where MJ is the tridiagonal matrix

MJ¼

0
BBBBB@

BJ;−J AJ;−Jþ1 0 0 0 � �� 0

CJ;−J BJ;−Jþ1 A−Jþ2 0 0 � �� 0

0 CJ;−Jþ1 BJ;−Jþ2 AJ;−Jþ3 0 � �� 0

..

. . .
. ..

.

0 � � � 0 CJ;J−1 BJ;J

1
CCCCCA
:

(22)

For a given state specified by initial populations P⃗Jð0Þ,
Eq. (21) has the solution

P⃗JðtÞ ¼ exp ðtΓsMJÞP⃗Jð0Þ: (23)

The equilibrium state of each subspace VJ of the driven
spin-ensemble satisfies MJ · P⃗Jð∞Þ ¼ 0, and is given by
ρJ;eq ¼

P
J
m¼−J PJ;mð∞ÞρJ;m, where

PJ;mð∞Þ ¼ n̄Jþmð1þ n̄ÞJ−m
ð1þ n̄Þ2Jþ1 − n̄2Jþ1

: (24)

The total spin expectation value for the equilibrium state
of each subspace of the spin ensemble is

hJxieq ¼ −J þ n̄ − ð2J þ 1Þn̄2Jþ1

ð1þ n̄Þ2Jþ1 − n̄2Jþ1
: (25)
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If we consider the totally symmetric Dicke subspace in the
limit ofNs ≫ n̄, we have that the ground state population at
equilibrium is given by PNs=2;−Ns=2 ≈ 1=ð1þ n̄Þ and the
final expectation value is approximately hJxieq≈−Ns=2þ n̄. Thus, the final spin polarization in the
Dicke subspace will be roughly equivalent to the thermal
cavity polarization.
We note that if the detuning δω were negative, matching

ΩR ¼ δω would result in the HþΩR
term being dominant,

leading to a master equation (15) with the operators J− and
Jþ interchanged, the dynamics of which would drive the
spin ensemble towards the hJxi ¼ J state. Thus, the detuning
must be larger than the cavity linewidth to prevent competi-
tion between theH−ΩR

andHþΩR
terms, which would drive

the spin system to a high entropy thermally mixed state.
The tridiagonal nature of the rate matrix (22) allows

Eq. (23) to be efficiently simulated for large numbers of
spins. For simplicity we will consider the cooling of the
Dicke subspace in the ideal case where the cavity is cooled
to its ground state (n̄ ¼ 0), and the spin ensemble is taken
to be maximally mixed in the basis of the spin-J subspace
[Pmð0Þ ¼ 1=ð2J þ 1Þ for m ¼ −J;…; J].
The simulated expectation value of hJxðtÞi for the Dicke

subspace with total spin Ns=2 ranging from Ns ¼ 103 to
105 is shown in Fig. 1, normalized by −J to obtain a
maximum value of 1. At a value of −hJxðtÞi=J ¼ 1 the
Dicke subspace of the spin ensemble is completely polar-
ized to the Jx ground eigenstate jJ;−Ji .
The expectation value hJxðtÞi may be fitted to an

exponential to derive an effective cooling time constant,
T1;eff , analogous to the thermal spin-lattice relaxation time,
T1. A fit to a model given by

− hJxðtÞi
J

¼ 1 − exp

�
− t
T1;eff

�
(26)

yields the parameters T1;eff ¼ λð2JÞγ=Γs with λ ¼ 2.0406
and γ ¼ −0.9981. An approximate expression for the
cooling time constant for the spin subspace VJ as a function
of J is then

T1;effðJÞ ≈
1

ΓsJ
¼ κ2 þ 4Δ2

g2κJ
; (27)

showing that the cooling efficiency is maximized when the
Rabi drive strength is matched to the cavity detuning
(Δ ¼ 0). In this case the cooling rate and time constant
simplify to Γs ¼ g2=κ and T1;eff ¼ κ=g2J, respectively.
In the case where the cavity is thermally occupied, the

final spin polarization is roughly equal to the thermal cavity
polarization, and for cavity temperatures corresponding to
n̄ <

ffiffiffiffiffi
2J

p
the effective cooling constant T1;eff is approx-

imately equal to the zero temperature value [37].
To achieve this result experimentally, one must choose

parameters that adhere to the two RWA’s used to isolate the
spin-cavity exchange term of Eq. (6). Under the condition

that δω ≈ΩR, this requires that g
ffiffiffiffiffiffi
Ns

p
≪ κ ≪ ΩR,

δω ≪ ωc, ωs [37]. For example, assuming an implementa-
tion using x-band pulsed electron spin resonance (ωc=2π ≈
ωs=2π ¼ 10 GHz), with samples that typically contain
from roughly Ns ¼ 106 spins to Ns ¼ 1017 spins [44,45],
experimentally reasonable values are ΩR=2π ¼ 100 MHz,
Q ¼ 104 (κ=2π ¼ 1 MHz) [46–48], and g=2π ¼ 1 Hz [47].
For these parameters, the range of validity of the

Markovian master equation is Ns ≪ κ2=g2 ¼ 1012 and
the Dicke subspace of an ensemble containing roughly
1011 electron spins may be polarized with an effective T1 of
3.18 μs. This polarization time is significantly shorter than
the thermal T1 for low-temperature spin ensembles, which
normally range from seconds to days [2].
Several assumptions were made in the presented theoretical

model for cavity cooling of a spin ensemble. First, we have
assumed that the spin ensemble is magnetically dilute such that
no coupling exists between spins. Any spin-spin interaction
that breaks the global SU(2) symmetry of the TC Hamiltonian
will connect the spin-J subspaces in the coupled angular
momentum decomposition of the state space. Such an
interaction may be used as an additional resource that should
permit complete polarization of the full ensemble Hilbert
space. Second, we have neglected the effects of thermal
relaxation of the spin system. As the cooling effect of the
cavity on the spin system relies on a coherent spin-cavity
information exchange, the relaxation time of the spin system in
the frame of the Rabi drive—commonly referred to as T1;ρ—
must be significantly longer than the inverse cavity dissipation
rate 1=κ. Third, we have assumed that the spin-cavity coupling
and Rabi drive are spatially homogeneous across the spin
ensemble. Inhomogeneities may be compensated for by
numerically optimizing a control pulse that implements an
effective spin-locking Rabi drive of constant strength over a
range of spin-cavity coupling and control field amplitudes [49].
Finally, the derivation of the Markovian master equa-

tion (15) assumes that no correlations between the cavity and
spinsystemaccrueduring thecoolingprocess, such that there

Ns

102

103

104

105

0.002 0.004 0.006
st0.0

0.2

0.4

0.6

0.8

1.0

Jx J

0.008

FIG. 1 (color online). Simulated evolution of the normalized
expectation value of−hJxðtÞi=J for the Dicke subspace of a cavity-
cooled spin ensemble. The time axis is scaled by the effective
dissipation rate, Γs, for the spin-ensemble given in Eq. (16).
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is no back action of the cavity dynamics on the spin system.
This condition is enforcedwhen the cavity dissipation rate, κ,
exceeds the rate of coherent spin-cavity exchange in the
lowest excitation manifold by at least an order of magnitude
—i.e., κ ≥ 10g

ffiffiffiffiffiffi
Ns

p
[37]. In this Markovian limit, the rate at

which spin photons are added to the cavity is significantly
less than the rate at which thermal photons are added,
meaning the cooling power of the fridge necessary to
maintain the thermal cavity temperature is sufficient to
dissipate the spin photons without raising the average
occupation number of the cavity. From Eq. (27) we see that,
in principle, the cooling efficiency could be improved by
addingmorespins tomakeκ closer tog

ffiffiffiffiffiffi
Ns

p
,but in this regime

the cooling power of the fridge is no longer sufficient to
prevent back action from the cavity, and strong non-
Markovian effects significantly lower the cooling rate.
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