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We introduce information-theoretic definitions for noise and disturbance in quantum measurements and
prove a state-independent noise-disturbance tradeoff relation that these quantities have to satisfy in any
conceivable setup. Contrary to previous approaches, the information-theoretic quantities we define are
invariant under the relabelling of outcomes and allow for the possibility of using quantum or classical
operations to “correct” for the disturbance. We also show how our bound implies strong tradeoff relations
for mean square deviations.
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Heisenberg’s uncertainty principle (HUP) states, loosely
speaking, that in quantum theory a measurement process
cannot measure one observable accurately, such as the
position, without causing a measurable disturbance to
another incompatible observable, such as the momentum.
Notwithstanding the crucial role played by Heisenberg’s
principle in modern science, it took a long time between its
first exposition [1,2] and its rigorous formalization in terms
of noise and disturbance operators [3–5]. The statistical
spreads of these operators are measurable quantities, and
hence tradeoff relations satisfied by these spreads yield
precise mathematical translations of Heisenberg’s intuition
[3,6,7] that have recently been experimentally tested in a
number of scenarios [8–14]. The use of noise and disturb-
ance operators allows for a detailed, state-dependent
formulation of HUP, able to capture the idea of “how
accurate” a measurement is with respect to one dynamical
variable and “how delicate” the same measurement is with
respect to another dynamical variable.
In this Letter, we will explore a different approach to

HUP, focused not on the change per se in a system’s
dynamical variables, but on the loss of correlation intro-
duced by this change. In doing so, we will make use of
ideas from information theory such as a “guessing strategy”
and error correction, and our definitions will be given in
terms of information-theoretic quantities like entropies
and conditional entropies. While we focus on the noise-
disturbance context here, our approach also yields tradeoff
relations for joint measurements.
In order to understand the difference between the present

approach and the previous one, let us consider, for example,
the case of noise. While the noise, in its conventional form
of root-mean-square deviation, is a statistical measure of
the distance between a given system observable and the
quantity actually measured [6,15], here we will only be

interested in how well one can infer (i.e., guess) the value of
a system observable from a given measurement outcome.
That is to say, we will look only at the degree of correlation
between the measurement and the observable, irrespective
of how the corresponding outcomes and values are numeri-
cally labeled.
Analogously, when characterizing the disturbance,

we will consider the measurement process as a source of
noise for the system, and the degree to which such noise
can be corrected (for a given observable) will give us our
definition of disturbance.
Our measures of noise and disturbance will therefore

quantify the unavoidable loss of correlations, i.e., the
irreversible components of noise and disturbance. In par-
ticular, our definitions and results are invariant under revers-
ible operations, such as relabeling of outcomes and unitary
time evolutions. In contrast, the conventional approach using
root-mean-square deviations is not invariant, as such oper-
ations can change numerical values and indeed the system
observables of interest.
Information-theoretic approaches to HUP-like questions

have already been proposed in a variety of forms [16–19].
However, these focus on the disturbance of the system state
per se, with tradeoff relations which are functions only of
the initial state of the system and the measuring apparatus.
In contrast, we define noise and disturbance with respect to
two system observables, and our tradeoff relation depends
on the degree to which such observables are compatible, in
the spirit of the original HUP. Moreover, our definitions are
functions only of the two observables and the measuring
apparatus, leading to a state-independent tradeoff relation.
We note that a state-independent noise-disturbance

relation has recently been given, for the case of position
and momentum observables, in the conventional context of
root-mean-square noise and disturbance [20]. In contrast,
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our information-theoretic relation applies to arbitrary
observables and leads to stronger results.
Our proposal.—For simplicity, consider two nondegen-

erate observables X and Z of a finite-dimensional quantum
system S, with corresponding sets of eigenstates fjψxig and
fjφzig, respectively. The system is subjected to a measur-
ing apparatus M. Our aim is to introduce an operational
context for what it means for “M to measure X accurately,”
and for “M to disturb a subsequent measurement of Z.”
This will lead to sensible information-theoretic definitions
of noise and disturbance, NðM; XÞ and DðM; ZÞ, in terms
of operational measurement statistics, which satisfy the
following.
Theorem 1: For any measuring apparatus M and any

nondegenerate observables X and Z, the following tradeoff
between noise NðM; XÞ and disturbance DðM; ZÞ holds:

NðM; XÞ þ DðM; ZÞ ≥ − log c; (1)

where c ≔ maxx;zjhψxjφzij2 and the log is in base 2.
Theorem 1 clearly expresses the idea that, whenever

observables X and Z are not compatible (i.e., c < 1), it is
impossible to accurately measure one of them without
at the same time disturbing the other. Significant general-
izations and applications of this result will be given
further below.
In order to proceed, we imagine two corresponding

correlation experiments that can be performed withM. The
first experiment consists of a source producing eigenstates
jψxi of X at random, feeding these states into the apparatus
M, and determining how correlated the observed outcomes
m are with the eigenvalues ξx of X (Fig. 1). If it is possible,
from m, to guess ξx perfectly, then there is perfect
correlation, and we say that M can measure X accurately,
by making the corresponding optimal guess [21]. Hence,
the noise NðM; XÞ will be zero. In general, the noise
will increase as the probability of correctly guessing ξx
decreases. The experiment thus assesses the average
performance of the apparatus in discriminating between
different values of X.
In the second experiment, we imagine the source instead

producing eigenstates jφzi of Z at random, and feeding
these states through the apparatus M (Fig. 2). The task is

then to guess, as accurately as possible, the eigenvalue ζz of
the input state jφzi. We first permit an arbitrary operation E,
on both the classical outcome m and the “disturbed” output
quantum system S0, to allow for the possibility of
“correcting” any reversible disturbance by M, before
making a guess ẑ corresponding to the outcome of a
measurement of Z. If it is possible to guess perfectly, then
there is perfect correlation between ẑ and the input
eigenvalue ζz, and we say that M does not disturb Z.
Hence, the disturbance DðM; ZÞ will be zero. In general
the disturbance will increase as the correlation decreases.
The main difference between the first and the second

correlation experiments is that, in the second one, we are
allowed to use both the classical outcome observed and the
output quantum system S0. This is because “disturbance”
can only be meaningfully defined with respect to a
measurement of Z that happens after the measurement
process described byM has occurred. Thus, one is allowed
to base a guess on all of the data that emerges from the
measuring apparatus. Alternatively, the second experiment
can be understood in terms of “error correction”: before
guessing z, one tries to “undo,” as accurately as possible,
the action of the apparatus, seen as a noisy channel with
both quantum and classical outputs.
The notion of disturbance we consider is, therefore,

related to the “irreversible” character of a quantum meas-
urement: any reversible dynamical evolution is automati-
cally corrected during the correction stage. It therefore
captures the idea of “unavoidable” disturbance, in strong
contrast to the conventional formulation in terms of root-
mean-square deviations, where any change in the value of a
system’s dynamical variables is considered as a nontrivial
disturbance.
Quantifying noise.—As discussed above, we require the

information-theoretic noise NðM; XÞ to represent the
quality of the correlation between which eigenstate of X
was input and the measurement outcome m. For a given
input jψxi, this correlation is determined by the conditional
probability distribution pðmjψxÞ, which can be measured
via the experimental setup in Fig. 1. Since we are interested

FIG. 1. Noise with respect to X is measured by the ability
to guess correctly, from the measurement outcome M ¼ m, in
which eigenstate jψxi of X the system was initially prepared.
The guessed value x̂ will, in general, be some function fðmÞ of
the measurement outcome. Optimization over f is allowed.

FIG. 2. Disturbance with respect to Z is measured by the ability
to guess correctly, from the outcome variable M and the
“disturbed” output quantum system S0, in which eigenstate
jφzi of Z the system was initially prepared. It is permitted to
apply a quantum operation E to attempt to correct or minimize
any disturbance, prior to a measurement of Z (with outcome ẑ).
Optimization over E is allowed.
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in the average noise performance, we have to introduce
an a priori distribution on the eigenstates jψxi. By
fixing the prior to be the uniform one, i.e., pðxÞ ¼ 1=d
where d denotes the dimension of the Hilbert space of
the system, we obtain the joint input-output probability
distribution

pðm; xÞ ¼ pðxÞpðmjψxÞ ¼ 1

d
pðmjψxÞ: (2)

This characterizes the correlation between X and M, and
leads to the following.
Definition 1.—The information-theoretic noise of

the instrument M as a measurement of X is defined
as NðM; XÞ ≔ HðXjMÞ, where HðXjMÞ denotes the con-
ditional entropy computed from the joint probability
distribution pðm; xÞ in Eq. (2).
Note that NðM; XÞ can be interpreted as the average

uncertainty as to which eigenvalue of X was input, given
the outcome of the measurement. Our definition can be
further justified, in the precise sense that the noise
NðM; XÞ is small if and only if the outcome m identifies
the eigenvalues of X accurately. In fact, as we show in
the Supplemental Material [22], standard arguments in
information theory [23–26] imply that, given a guessing
function x̂ ¼ fðmÞ with its total error probability
pe ≔ PrfX̂ ≠ Xg ¼ P

x

P
x̂≠x pðx̂; xÞ, it holds that

NðM; XÞ → 0 iff min
f
pe → 0: (3)

Quantifying disturbance.—Let us now consider a second
nondegenerate observable Z ¼ P

zζzjφzihφzj of system S.
While the noise depends only on the measurement out-
come, the disturbance can depend, in principle, on both the
classical outcome (M) and the quantum output system (S0)
of M. However, the conceptual framework is analogous to
that for noise: we imagine that eigenstates of Z are acted
upon by the measurement process M. We then require the
information-theoretic disturbance to quantify the extent
to which the action of M reduces the information about
which eigenstate jφzi was initially selected.
However, if we want to quantify truly unavoidable

disturbance, we have to allow any possible action aimed
at recovering this information, after the measurement
process M has taken place. We therefore allow an
optimization over all possible correction procedures, before
any attempt to estimate z is conducted. A general correction
procedure is modeled by a completely positive trace-
preserving map E, reconstructing the initial system S from
the output system S0 and the measurement record M
(Fig. 2). The final estimation of z can then be performed
via a standard (i.e., von Neumann) measurement of Z, since
any additional optimization can be incorporated into the
correction channel E, and no more than d outcomes are
needed to discriminate between the input eigenstates. The

information-theoretic disturbance will therefore depend on
the joint probability distribution given by

pðẑ; zÞ ≔ pðzÞpðẑjφzÞ ¼ 1

d
pðẑjφzÞ; (4)

which characterizes the correlation between z and ẑ. In the
above equation, as we did before for the case of noise, we
are selecting the eigenstates of Z uniformly at random.
We can now formalize the above discussion as follows.
Definition 2.—The information-theoretic disturbance

that the apparatusM introduces on any subsequent attempt
to measure the observable Z, is defined as DðM; ZÞ ≔
minEHðZjẐÞ, where the conditional entropy HðZjẐÞ is
computed from the joint probability distribution pðẑ; zÞ in
Eq. (4), and the minimum is taken over all possible
completely positive trace-preserving maps E.
As for the information-theoretic noise above, this mea-

sure quantifies the average uncertainty of Z, given the
outcome of the estimate. Eq. (3) can similarly be applied to
justify our definition. In fact, besides Eq. (3), the notion of
disturbance we have introduced can be given an alternative
interpretation, directly related to the idea that the meas-
urement process irreversibly disturbs the measured system.
Defining the probability of error as pe ¼

P
z

P
ẑ≠z pðẑ; zÞ,

the probability of guessing correctly, 1 − pe, is nothing
but the average fidelity of correction, i.e., 1 − pe ¼
d−1

P
z FfðE∘MÞðjφzihφzjÞ; jφzihφzjg, where Ffρ; σg ≔

Tr ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp �2 is the fidelity between states ρ and
σ [27,28].
Information-theoretic noise-disturbance relation.—Defini-

tions 1 and 2 lead to the noise-disturbance relation,
Eq. (1), as shown in the Supplemental Material [22].
The proof is based on a mapping of the statistics of the
two estimation procedures in Figs. 1 and 2 (which require
separate inputs of the eigenstates of X and Z), to the
measurement statistics of a single maximally entangled
state, and applying the Maassen-Uffink entropic uncertainty
relation [29] to this state.
Useful quantum lower bound on disturbance.—Given an

apparatus M and two observables X and Z, both the noise
NðM; XÞ and disturbance DðM; ZÞ can in principle be
computed. However, while the noise can be computed
directly from the data, the definition of disturbance involves
an optimization over all possible correction procedures.
Such an optimization can, in general, be very hard to
perform. Such a problem can, however, be encompassed
simply by noticing that any correction followed by an
estimation of Z is nothing but a postprocessing of systems
S0 and M into the estimated variable Ẑ. We can therefore
apply the quantum data-processing inequality [30–32] to
arrive at the lower bound DðM; ZÞ ≥ HðZjS0MÞ for the
disturbance, where the conditional quantum entropy
HðAjBÞ is defined as the difference of the von Neumann
entropies corresponding to the combined system AB and
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system B. As we prove in the Supplemental Material [22], it
is also possible to refine the bound of Theorem 1 to

NðM; XÞ þHðZjS0MÞ ≥ − log c: (5)

The idea is that one can use the Stinespring representation
theorem [33] to purify the action of the measurement
channel M to an isometry V∶HS → HS0 ⊗ HM ⊗
HE ⊗ HM̄, where the additional systems E and M̄ re-
present the environment and the environment’s redundant
copy of M, respectively, and then apply the recently
discovered complementarity relations in the presence of
quantum memory [34,35].
Generalizations.—Since the proof of the tradeoff

relation, Eq. (1), only requires that X̂ and Ẑ are joint
estimates of X and Z [22], it follows as an immediate
corollary that

NðM; XÞ þ NðM; ZÞ ≥ − log c (6)

for any joint estimate of X and Z via measurement ap-
paratus M. This information-theoretic joint-measurement
tradeoff relation may be contrasted to the joint-measurement
information exclusion relation of Hall [36]. In particular,
contrarily to the latter, Eq. (6) is state independent; i.e., it
constrains the inherent degree to which the measurement
apparatus can simultaneously perform as an X-measuring
device and a Z-measuring device.
Moreover, we can generalize the tradeoff relation in the

theorem to degenerate observables X and Z. One can use
essentially the same arguments as in the nondegenerate
case, with a suitable entropic uncertainty relation [37],
to replace the constant c in Theorem 1 with c0 ¼
maxx;zjjXxZzjj2∞, where Xx and Zz are the spectral pro-
jectors corresponding to distinct eigenvalues of X and Z,
respectively (see Supplemental Material [22]).
Our information-theoretic approach also yields tradeoff

relations for root-mean-square deviations. In particular,
for the joint probability distribution pðm; xÞ in Eq. (2),
consider the alternative measure of noise defined by
VX
N ≔

P
m;xpðm; xÞ½x̂ − ξx�2, where x̂ ¼ fðmÞ is the esti-

mate of x from measurement outcome m. Thus, this
measure is just the mean square deviation (MSD) of the
estimate of the input eigenvalue from its true value. One
may similarly define a measure of disturbance by the MSD
VZ
D ≔

P
ẑ;zpðẑ; zÞ½ẑ − ζz�2. As shown in the Supplemental

Material [22], these quantities are equal to squares of
the noise and disturbance measures defined by Ozawa
[3] for the particular case of a maximally mixed system
state ρS ¼ d−11S. If the spacing between eigenvalues of X
(Z) is a multiple of some value sX (sZ), then the tradeoff
relation,

�
VX
N þ ðsXÞ2

12

��
VZ
D þ ðsZÞ2

12

�
≥
�
sXsZ
2πec

�
2

; (7)

follows as a corollary to Theorem 1 (see Supplemental
Material [22]). It follows, for example, that if X and Z are
the Pauli spin operators for a qubit system, then VX

N and VZ
D

cannot both vanish. This cannot, in contrast, be concluded
from known noise-disturbance tradeoff relations for the
maximally mixed state [3,7].
A generalization to continuous observables is not

straightforward operationally, as the corresponding eigen-
kets are not physical states. However, as described in the
Supplemental Material [22], it is possible to formally take
limits to obtain the tradeoff relation,

NðM; QÞ þ DðM; PÞ ≥ log πeℏ; (8)

for position Q and momentum P. Moreover, defining
MSDs VQ

N and VP
D as above, this bound further implies

the Heisenberg-type noise-disturbance relation VQ
NV

P
D ≥

ℏ2=4 in the same way that the usual Heisenberg uncertainty
relation follows from the entropic uncertainty relation forQ
and P [38]. Note this is similar in form to, but stronger than,
the relation recently obtained by Busch et al. [20], as the
latter is for the product of the maximum possible devia-
tions, rather than for the product of the mean deviations.
In both cases, however, the measures of noise and disturb-
ance for position and momentum are purely formal, with
no operational counterparts. Hence it appears that state-
dependent noise-disturbance and joint-measurement rela-
tions [3,6,7,10,15,36,39] may be preferable for continuous
observables.
Finally, while Theorem 1 relies on the entropic

uncertainty relation due to Maassen and Uffink, any
such relation, such as those recently obtained by Puchala
et al. [40] and Coles et al. [41], will similarly lead to a
corresponding tradeoff relation for the information-
theoretic noise and disturbance.
Conclusion.—We have obtained an information-

theoretic characterization of Heisenberg’s uncertainty
principle, which for the first time characterizes the inherent
degree to which a given measurement apparatus must
disturb one observable to gain information about another
observable, independently of the state of the system
undergoing measurement. Our proposed measures of noise
and disturbance quantify the irreversible loss of correlations
introduced by the measurement apparatus, and are invariant
under operations such as the relabeling of outcomes and
invertible evolutions. Further, in the case of discrete
observables, they can be operationally determined, as per
Figs. 1 and 2. Our main theorem has a number of
generalizations, including extensions to tradeoff relations
for joint measurements, degenerate observables, root-
mean-square deviations, and continuous observables, and
yields stronger constraints than previous results in the
literature.
We believe the above fundamental results will have

diverse applications in quantum information theory and
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quantum metrology, for example, and will also motivate
experimental confirmation of the strong information-
theoretic form of the Heisenberg uncertainty principle
presented here.
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