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We theoretically predict that thin-film topological crystalline insulators can host various quantum
anomalous Hall phases when doped by ferromagnetically ordered dopants. Any Chern number between�4

can, in principle, be reached as a result of the interplay between (a) the induced Zeeman field, depending on
the magnetic doping concentration, (b) the structural distortion, either intrinsic or induced by a
piezoelectric material through the proximity effect, and (c) the thickness of the thin film. We propose
a heterostructure to realize quantum anomalous Hall phases with Chern numbers that can be tuned by
electric fields.
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A quantum anomalous Hall state is a 2D topological
insulating state that has quantized Hall conductance in the
form of Ce2=h, where C is an integer, and possesses jCj
gapless edge modes along any 1D edge. These properties
are shared by the well-known quantum Hall states [1].
Nevertheless, there is no external magnetic field in a QAH
state, which makes it “anomalous.” Hence, the nontrivial
topology in QAH does not come from the topology of the
Landau levels, but rises from the band structure of electrons
coherently coupled to certain magnetic orders, e.g., spin
orders and orbital current orders. The first theoretical model
that shows this phase is given in Ref. [2], which is followed
by other models and experimental proposals in various
systems [3–8]. Very recently, experimentalists have adapted
one of the proposals and realized a QAH state with jCj ¼ 1

in chromium doped thin-film ðBi; SbÞ2Te3, which is a 3D
topological insulator (TI) [9,10].
We first recapitulate the basic idea underlying the

realization of QAH insulators with jCj ¼ 1 in a thin-film
3D topological insulator[4–7]. Each surface of a 3D TI is a
gapless 2D Dirac spin-split semimetal [11,12], as opposed
to spin-degenerate Dirac semimetals such as graphene. The
surface is spin split except at the Dirac point where double
degeneracy is protected by time-reversal symmetry, and
spectral flow into the bulk conduction and valence bands
occurs away from the Dirac point. Upon the application of a
Zeeman field along the perpendicular direction, induced by
ferromagnetic dopants, a gap is opened at the Dirac point,
giving rise to a massive Dirac cone. Such a massive Dirac
cone has been well known to contribute Hall conductance
of �e2=2h [4,13], or, a Chern number of �1=2. Moreover,
since a thin film has two surfaces (top and bottom), the total
Chern number is �1. An identical effect would take place
in bulk samples—thin films are being used here only

because they allow tuning of the Fermi level in the gap
by gating [14,15]. Here we use a symmetry-based analysis
to show that the topological crystalline insulators [16–24]
[such as (Pb,Sn)(Te,Se)] are much richer compounds to
explore QAH physics. As thin films of (Pb,Sn)(Te,Se) have
already been grown [25–27] and various magnetic dopants
have been successfully doped [28–30], we believe our
proposal is experimentally realizable. The existence of such
a widely tunable topological phase transition in the topo-
logical crystalline insulator (TCI) class of materials may
form the basis for new types of information processing
devices which consume much less power compared to
current technology.
Consider the symmetries of such a thin film. (Pb,Sn)(Te,

Se) crystalizes into a face-centered-cubic lattice with point
group Oh. Below a critical temperature, depending on
composition, the cubic symmetry spontaneously breaks
into either rhombohedral or orthorhombic symmetries,
resulting in a small lattice distortion. Here we assume that
the lattice has cubic symmetry and treat the small distortion
as a perturbative strain. The thin-film sample is terminated
on the (001) plane, where Oh reduces to a 2D point group
C4v. The bulk system also has time-reversal symmetry and
inversion symmetry, which relates the top and the bottom
surfaces in the absence of asymmetric surface terminations.
The in-plane translational symmetry allows the definition
of the surface Brillouin zone, which is centered at Γ̄ and
bounded by X̄ along the ½110� direction and Ȳ along the
½11̄0� direction [Fig. 1(a)]. Four Dirac points close to the
Fermi energy have been observed in experiments [18–20].
Two Dirac points, denoted by D1;2, are located along Γ̄ X̄,
close to and symmetric about X̄ M̄; two others, denoted by
D10;20 , are located along Γ̄ Ȳ, close to and symmetric about
Ȳ M̄. The band dispersion around any of the four Dirac
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points is linear in all directions to first order, resulting in
four copies of a spin-split Dirac semimetal, related to each
other by 90° rotations [Fig. 1(b)]. Recently, scanning
tunneling spectroscopy measurements suggest [24] that
in the rhombohedral phase, two of the four Dirac points are
gapped [Fig. 1(c)].
We assume that the Fermi level is exactly at the Dirac

point energy. While this is not true in bulk samples due to
intrinsic impurity doping, in thin-film samples the Fermi
level can be tuned anywhere in the bulk gap. Since the
change in the Chern number only depends on the electronic
states near the gap-closing points, i.e., the four Dirac points,
we start by deriving the effective theories for each Dirac
cone and then consider their coupling to gap-opening
perturbations. The minimal model for each Dirac cone
hi¼1;2;10;20 ðqÞ, where q ¼ k −Di, is a two-band k · p

model, due to the double degeneracy at Di. The form of
hi is determined by how the doublet at Di transforms under
the little group at Di, i.e., a subgroup of the full symmetry
group which leavesDi invariant. For example, considerD1:
the little group is generated by the mirror reflection about
the (11̄0) plane, denoted byM11̄0 and a combined operation
of a 180° rotation about the [001] direction followed
by time reversal, denoted by C2T. This little group has
only one 2D irreducible representation [31]: M11̄0 ¼ iσy
and C2T ¼ Kσx, where K means complex conjugation, and
σx;y;z are Pauli matrices. It restricts h1ðqÞ to the form

h1ðqÞ ¼ v0q1I2×2 þ v1q1σy þ v2q2σx (1)

up to the first order of jqj. q decomposes into two
components q1 ¼ q · ê110 and q2 ¼ q · ê11̄0, where êmnl
is the unit vector along the ½mnl� direction. The parameters
v0;1;2 can be fixed by matching the dispersion of Eq. (1),
EðqÞ ¼ v0q1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21q

2
1 þ v22q

2
2

p
to the measured Fermi

velocities along the [110] and ½11̄0� directions
[ðv0; jv1j; jv2jÞ ∼ ð0; 1.1; 2.8Þ evÅ]. The Dirac cones cen-
tered at D2;10;20 can be related to the cone centered at D1 by
C4 symmetry. This automatically gives the effective the-
ories of the other Dirac cones: h2ðq1; q2Þ ¼ h1ð−q1;−q2Þ,
h10 ðq1;q2Þ¼h1ð−q2;q1Þ and h20 ðq1;q2Þ¼h1ðq2;−q1Þ[31].
We assume a Zeeman field in the sample along the [001]

direction, induced by ferromagnetically ordered dopants. In
order to couple this field to the electrons in the k · p
models, we add an additional term δHZ

i to hi¼1;2;10;20 ðqÞ and
note the following facts: (i) magnetization along the [001]
direction changes sign under both M11̄0 and C2T and (ii) it
is invariant under 90° rotations about the [001] direction.
Using these facts, we have,

δHZ
i ≡ δHZ ¼ ΔZσz þOðjqjÞ;

where jΔZj is the field strength of the Zeeman field, which
is proportional to the Curie temperature, Tc, of the
ferromagnetism. The sign of ΔZ depends on the direction
of the magnetization. The Hamiltonian for each cone with
the induced Zeeman field is hiðqÞ þ δHZ, which has a gap
of size jΔZj at each Dirac point [see Fig. 2(b)].
Now we consider the effect of intrinsic and external

strains. Depending on the Sn and Se concentration, the
cubic lattice can have spontaneous distortions into either
rhombohedral or the rhombohedral symmetries. One may
also cap the top surface of the film with a piezoelectric
material such as BaTiO3, to control the strain on the top
surface. A general strain tensor is given by a symmetric
matrix ϵij, where i,j ¼ 1, 2, 3 written in the frame spanned
by (ê110, ê11̄0, ê001). In order to represent couplings to the
strain tensor in the k · p models, we need to determine the
transform of each component under the symmetry group
C4v and time reversal (Table I). Using these relations, we
obtain the following strain induced terms for the four Dirac
cones, to the zeroth order of jqj:

(b)

(a)

(c)

FIG. 1 (color online). (a) The surface Brillouin zone centered at
Γ̄ and bounded by X̄, Ȳ, which is symmetric under 90° rotations
about the vertical line through the center, and mirror reflections
about the two dotted lines. The positions of the Dirac points are
marked. (b) The schematics of the dispersion of the four Dirac
cones on the (001) plane in the surface Brillouin zone. The
middle plane is the E ¼ EF plane passing through the four Dirac
points at exact half filling. (c) The proposed surface dispersion of
the rhomboderal phase with two massive and two massless Dirac
cones, where a red (blue) cone contributes a fractional Chern
number of þ1=2 (ð−1=2Þ), respectively.
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δHS
1=2 ¼ ðλ11ϵ11 þ λ22ϵ22 þ λ33ϵ33 � λ13ϵ13Þσy

þ λ12ϵ12σx � λ23ϵ23σz;

δHS
10=20 ¼ ðλ11ϵ22 þ λ22ϵ11 þ λ33ϵ33 � λ13ϵ23Þσy

− λ12ϵ12σx � λ23ϵ13σz;

where λij are electrophonon couplings.
Consider the full Hamiltonian for each Dirac cone under

both Zeeman field and strain, Hi ¼ hi þ δHZ
i þ δHS

i . In
Hi, only terms proportional to σz open gaps in the spectrum
while others move the position of the Dirac point Di. The
gap at each Di, i.e., the coefficient before the σz term in the
Hamiltonians, denoted below by Δi, is

Δ1;2 ¼ ΔZ � Δ23; Δ10;20 ¼ ΔZ � Δ13;

where we have defined Δ13=23 ≡ λ23=13ϵ23=13. Each gapped
Dirac cone contributes

σHi ¼ −sgnðv1v2ΔiÞe2=ð2hÞ (2)

to the Hall conductance [31].
We have so far assumed that the top and the bottom

surfaces are isolated from each other, and hence the total
Hall conductance is

σH ¼
X

i¼1;2;10;20
σH;t
i þ σH;b

i ; (3)

where superscript tðbÞ denotes the top (bottom) surface.
When the thickness is comparable to the decay length
of the surface states, the hybridization gap between the
two surfaces, denoted by ΔH, becomes significant, and
the total Hall conductance is generically not given by
Eq. (3). Diagonalizing each k · pHamiltonian with hybridi-
zation [31]

~Hi ¼
�

Ht
i ΔHI2×2

ΔHI2×2 Hb
i

�
; (4)

we have two scenarios. (i) If sgnðΔt
iÞ ¼ sgnðΔb

i Þ
[where ΔtðbÞ denotes the gap at top (bottom) surface], as
ΔH increases, thegapatDi closesat jΔHj¼Δi;Hc≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔt

iΔb
i j

p
and reverses [see Fig. 3], and at jΔHj > Δi;Hc, the total
contribution to σH vanishes; (ii) if sgnðΔt

iÞ ¼ −sgnðΔb
i Þ,

there is no quantum phase transition as ΔH increases, and
the total contribution to Hall conductance stays at zero. The
complete expression for the Hall conductance is, therefore,

(a) (c) (e)

(b) (d) (f)

FIG. 2 (color online). (a) The schematic of a thin-film Pb0.5Sn0.5Te grown on a substrate, capped by a piezoelectric. (b)–(d) The
schematic dispersions of the gapped Dirac cones on the top surface in the presence of uniform Zeeman field and strains, corresponding
to the parameters ΔZ > jΔ13j ¼ jΔ23j ¼ 0, jΔ13j > ΔZ > jΔ23j ¼ 0, and 0 < ΔZ < jΔ13j ¼ jΔ23j, respectively. (e) The Chern number
of the proposed system in the thick limit (sample thickness > 20 nm) plotted against the transverse electric fields applied on the
piezoelectric. (f) The Chern number of the system with thickness of 5 ∼ 10 nm. Factor r in the front of the electric fields is the proportion
of the strain that is transferred from piezoelectric to the sample.

TABLE I. The first four rows show the transformation
properties of each tensor component under the symmetry
group C4v ⊗ T, where � means invariant or inverted. The last
four rows show which Pauli matrix is coupled to each component,
to the zeroth order, in the effective theory for each Dirac cone.

ϵ11 ϵ22 ϵ33 ϵ12 ϵ13 ϵ23

C2T þ þ þ þ − −
M11̄0 þ þ þ − þ −
M110 þ þ þ − − þ
C4 ϵ22 ϵ11 þ − ϵ23 −ϵ13
δHS

1 σy σy σy σx σy σz
δHS

2 σy σy σy σx −σy −σz
δHS

10 σy σy σy −σx σz σy
δHS

20 σy σy σy −σx −σz −σy
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σH ¼
X

i¼1;2;10;20
ðσH;t

i þ σH;b
i ÞθðΔi;Hc − jΔHjÞ; (5)

where θðxÞ is the Heaviside step function.
Depending on the parameter set of fΔZ;Δ

tðbÞ
13;23;ΔHg, the

Chern number of the system takes each integer from −4 to
þ4. In a realistic system, however, not all parameters are
easily tunable, so the range of the Chern number is
generically restricted. We propose a system shown in
Fig. 2(a): a thin-film Pb0.5Sn0.5Te doped with Mn or Cr,
epitaxially grown on a substrate, e.g., NaCl or KCl [32,33],
with its top surface deposited or glued [34] with piezo-
electric crystals such as BaTiO3. Below T ∼ 10 K, the
(Cr, Mn) moments develop ferromagnetism, inducing a
small Zeeman gap ΔZ ∼ 1 meV in the sample [28]. The
external strain on the top surface may be tuned by the
piezoelectric. Assuming that the strain in BaTiO3 be
completely transferred to the top surface of the film, we
estimate that [35–37] the jΔt

13j¼2×10−6E11̄0 meVmtV−1
and jΔt

23j¼2×10−6E110 meVmV−1. Practically, depend-
ing on the interface, only a certain proportion of the
piezoelectric strain can be transferred, say r < 1, and the
induced gaps should be multiplied by r. Since the sample
with such composition has zero or negligible intrinsic
distortion at low temperatures, Δb

13;23 ¼ 0. In the thick
limit (d > 20 nm), ΔH ≪ 1 meV and is negligible [38].
[Also see Ref. [22], where a simulation of 33-layer thick
sample (20 nm) shows negligible hybridization gap.] From
Eq. (2), the bottom surface always contributes C ¼ 2.
There are three possible scenarios for the top surface,
resulting in σH;t ¼ 2, 1, 0, respectively, (i) jΔt

13;23j < jΔZj,
(ii) jΔt

23j < jΔZj < jΔt
13j, and (iii) jΔZj < jΔt

13;23j, where
we have assumed jΔt

13j > Δt
23j without loss of generality.

The dispersion of the four gapped cones for the three
scenarios are plotted in Figs. 2(b)–(d). The total Chern
number can thus be tuned between 2, 3, and 4, plotted
against E11̄0 and E110 in Fig. 2(e). In a thinner film
with thickness d ¼ 5 ∼ 10 nm, the hybridization gap is

jΔHj ¼ 5 ∼ 15 meV [39], from which we take ΔH ¼
10 meV as a typical value and we plot the Chern number
against E11̄0 and E110 in Fig. 2(f). We see that around the
critical field strength jE11̄0j ¼ jE110j ¼ 5 × 107 Vm−1=r,
the Chern number can be electrically tuned to 0, 1, or 2. If
the length and width of the sample are both 100 nm, this
means that the Chern number can be tuned by varying
V11̄0;110 within 10 mV. The ability to tune the topological
phase transition with such a small electric field offers hope
that such logic devices based on piezoelectric deformation
of a TCI could possess on-to-off ratios and subthreshold
slopes which far exceed current logic device technologies.
In the derivation of the main results, we have ignored

physical factors of (i) the impurities and (ii) the electron-
electron interaction. The mirror Chern number of a TCI is
only well defined in the presence of mirror planes. In a
system with a random impurity configuration, mirror
symmetries are broken and the mirror Chern number is
not a good quantum number, and, consistently, the gapless
modes at the Dirac points are gapped by impurity scatter-
ing. This mirror symmetry breaking by impurity has,
however, no effect on the Chern number in a ferromagneti-
cally doped system, as long as the intensity of the random
potential is much smaller compared with the Zeeman gap.
This is because the Chern number, unlike the mirror Chern
number, does not presume any symmetry, as long as the
surface is gapped. Weak interactions smaller than the
Zeeman gap do not have any effect on the quantized
Hall conductance either, because the Chern number is also
a good quantum number of an interacting gapped 2D
system [40,41].
It is also interesting to discuss other surface terminations

besides the (001) surface. On the (110) surface of SnTe,
first principles calculations [23] show that there are two
Dirac cones centered at two Dirac points that are close to
and symmetric about X̄ M̄ along Γ̄ X̄ in the surface BZ. The
two Dirac points are protected by the ð11̄0Þ mirror plane
and have equal energy due to the (001) mirror plane. A
Zeeman field along [110] gaps both Dirac points and results
in a QAH phase with Chern number of �2. A strain along
the ½11̄1� direction breaks both the ð11̄0Þ and the (001)
mirror planes, opening two gaps of opposite signs at the
two Dirac points. When both the strain and the Zeeman
field are present, a similar discussion shows that the Chern
number can be either �1 or �2. On the (111) surface, there
are four Dirac cones centered at Γ̄ and three M̄’s. The three
Dirac points at M̄ have the same energy due to the threefold
rotation symmetry about the [111] axis, while the one at Γ̄
generically has a different energy. This energy difference
among the Dirac points, which has been measured to be
∼40 meV in Ref. [27], makes it hard to have a fully gapped
surface using an induced Zeeman field, because the
Zeeman gap is generically much smaller than 40 meV.
Therefore, an insulator with quantized Hall conductance on
the (111)-surface is not possible using the current scheme.

FIG. 3 (color online). The figures show the quantum phase
transition happening at the Dirac cone centered at Di which is
induced by increasing the hybridization gap, ΔH , between the
top and the bottom surfaces. Here we start from a cone with
Δt

i > Δb
i > 0 at ΔH ¼ 0. Red (blue) means the represented cone

contributes �1=2 to the Chern number, respectively.

PRL 112, 046801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

046801-4



The Chern numbers in this system can be measured by
conventional four-terminal resistance measurements, as in
Refs. [9,10,42], with additional gates to control the Fermi
level and the piezoelectric strain.
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