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It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-
dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the
width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side,
or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the
ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the
basic mechanism which is responsible for the spin polarization and thereby enables the application of
graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical
processes. The great tunability of graphene magnetism thus offers a viable route for the study of the
quantum-classical crossover.
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Electron-electron interactions in solid-state systems,
containing large numbers of electrons, are exceedingly
difficult to treat and thus pose one of the greatest challenges
for theoretical physics. This is especially true for inter-
actions that are too strong to be accounted for perturba-
tively, i.e., the regime of strong correlations with its huge
variety of exotic phases. Graphene is usually not consid-
ered to be a strongly correlated material [1], because the
vanishing density of states (DOS) at the charge-neutrality
point suppresses magnetic correlation effects very effi-
ciently. However, the DOS only vanishes in a perfect bulk
crystal. Imperfections, such as edges or vacancies give rise
to additional electronic states at the Fermi level [2]. They
result in a peak in the local DOS, with the striking
consequence that these imperfections enter the regime of
strong correlations.
The central phenomenon in this context is the so-called

edge magnetism (EM) [3–12], which is discussed as having
possible applications in spintronics [13,14]. The simplest
geometry for EM is a nanoribbon with perfect zigzag
edges. In this case, all theories that we are aware of, predict
(or are usually interpreted to the effect of) an extended spin
polarization along the edges in the ground state, with
opposite spin directions at opposite edges. One might call
this a nonlocal Néel state in the sense that the opposite spins
are not neighbors on atomic distances, but are spatially
separated. Moreover, this Néel state is implicitly assumed
to be classical, i.e., nonfluctuating, just as the well-known
Heisenberg antiferromagnet. This picture is rooted in the
often-used mean-field approaches to EM, such as Hartree-
Fock or ab initio methods, which are the simplest methods
for the treatment of strong electronic interactions. They
approximate a problem of interacting fermions by a
problem of noninteracting fermions, complemented by a
self-consistency condition. But they disregard quantum
fluctuations and, in the present context, break the SUð2Þ

symmetry of the initial problem in an uncontrolled way.
More elaborate approaches, such as quantum Monte Carlo
(QMC) simulation [11,15,16] and density matrix renorm-
alization group [17], have been applied to EM, but these
methods are restricted to rather small systems in which at
least the static spin correlations agree well with mean-field
results [15,16]. Thus, the mean-field picture of EM with
static spin polarizations prevailed in the community.
In this Letter, we use a recently developed method [18]

allowing us to study EM in realistically large systems
without the above-mentioned mean-field artifacts. The
central idea of this method is the derivation of an effective
quantum Heisenberg theory for the edge states. For special
edge geometries in which the edge states are well localized
and separated from each other (see Fig. 1), this effective
theory has been shown to be in quantitative agreement with
numerically exact QMC methods [18]. We restrict our
quantitative calculations to this geometry, but our qualita-
tive arguments are expected to extend to more general
geometries, including the pure zigzag edge and those chiral
edges for which magnetic features are expected [5].

FIG. 1 (color online). Special ribbon geometry which allows for
a controlled mapping to a spin-1

2
quantum Heisenberg model with

a single spin located on each zigzag segment. The effective spin-
spin interactions are ferromagnetic (antiferromagnetic) along
(across) the edges and sketched here for one reference spin.
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We will discuss the different classical and quantum
aspects of EM and their interrelation—the quantum-
classical crossover—via the quantum Zeno effect [19].
Our arguments and calculations are based on extreme
geometries and limits in which exact calculations become
feasible. We thus aim at establishing a way of thinking
about edge magnetism, which is not based on mean-field
theory and which is consistent with rigorous theorems [20]
and results from exact methods [11,15–17].
Models and methods.—Our work is based on the lattice

Hubbard model for graphene Hl ¼ −tPhi;ji;τc
†
iτcjτþ

U
P

ic
†
i↑ci↑c

†
i↓ci↓, where ciτ annihilates an electron with

spin τ at site i. hi; ji runs over nearest neighbors. In the
spectrum of H0 there are two eigenstates ϕk� with energies
�εk smaller than those of all other eigenstates for a given
momentum k along the edge. These states are the (anti-)
symmetric combinations of the A and B edge states
ϕk�ðiÞ ¼ ϕkAðiÞ � ϕkBðiÞ, from which we can reconstruct
the actual edge states ϕksðiÞ, where s ¼ A, B labels
the edge.
Following Ref. [18], we construct a Wannier basis

ϕxsðiÞ ¼ L−1=2P
ke

−ikxþiφkϕksðiÞ, where x enumerates the
zigzag segment at each edge, L is the number of zigzag
segments along the edge, and φk are phases, optimized
numerically such that

P
ijϕxsðiÞj4 is maximal. It is conven-

ient to characterize the ribbons in terms of zigzag segments
L and the width W in nm. L is also the number of effective
spins at each edge. The essential approximation in the
derivation of the Heisenberg theory is the assumption that
eachWannier state is occupied by exactly one electron. This
is well justified in our geometry [18]. The electron spins in
the Wannier states are described by the Heisenberg model

HH ¼
X

x;x0
JAFxx0sxA · sx0B − X

s;x<x0
JFMxx0 sxs · sx0s; (1)

where sxs are vectors of spin-1
2
operators. The coupling

constants are given by JFMxx0 ¼ U
P

ijϕxsðiÞj2jϕx0sðiÞj2 and
JAFxx0 ¼ 4jt�xx0 j2=ðU

P
ijϕxsðiÞj4Þ, with the effective interedge

hopping t�xx0 ¼ −tPhi;jiϕ�
xAðiÞϕx0BðjÞ. The antiferromag-

netic terms JAFxx0 result from the usual combination of hopping
between electronic states txx0 and an on-site repulsion ∝ U.
The ferromagnetic JFMxx0 , however, is mediated by a direct
wave function overlap of Wannier states via the Hubbard
Hamiltonian, which prefers parallel spin alignments. For
more details, see Ref. [18]. The couplings in HH are
not restricted to nearest neighbors, but spread over
distances that depend on the ribbon width W. The typical
decay length (inunit cells) ofJFMxx0 isξFM ≈ 0.203 ðW=nmÞ þ
0.078 ðW2=nm2Þ and that of JAFxx0 is ξAF ≈ 0.57 ðW=nmÞ−
0.14. HH is thus reminiscent of a Heisenberg ladder with
ferromagnetic (antiferromagnetic) leg (rung) couplings,
which are, unlike in conventional Heisenberg ladders,
smeared out over many neighboring spins. The notion of

Heisenberg ladders in EM is not new (cf. Refs. [10,13,21]),
but we present here a controlled microscopic derivation and
analyze its full quantum nature.
Note that HH is not frustrated and is thus accessible by

QMC methods. Here, we employed the stochastic series
expansion (SSE) method [22,23], which is based on a
high-temperature series expansion of the partition function,
and enables us to calculate spin-spin correlations, gaps,
and susceptibilities of spin systems over a large temper-
ature range.
Magnetic edge correlations and spin gap.— Figure 2

shows the intraedge spin correlations as well as the spin gap
for ribbons of different widths W. In our QMC simulations
we mostly used ribbons with size L ¼ 8000, which
corresponds to 16 000 edge spins and a physical ribbon
length of about 12 μm. We perform all simulations at a
temperature T ¼ 10 mK, which we verified to be suffi-
ciently low to obtain ground state correlations for ribbons
with width at least up to W ∼ 6.0 nm. The distance over
which the spins are correlated along the same edge grows
rapidly withW. We extract the correlation length ξ from the
spin correlations by fitting an exponential function to
the asymptotic tails, hszxAszx0Ai ∝ expð−jx − x0j=ξÞ. From
the analogy with standard Heisenberg ladders with ferro-
magnetic leg couplings it is expected that ξ grows expo-
nentially with W [24,25], which is in qualitative agreement
with our results. The deviations from the exponential
behavior of ξ for W ≳ 6 nm is a finite size effect, as the
total length of the ribbon we simulate is on the order of ξ.
Note, however, that we actually consider realistic ribbon
lengths, so that this finite size effect is by no means an
artifact but an experimentally relevant regime. Results for
even longer ribbons (24 μm) support further exponential
growth of the correlation length. It should also be noted that
mean-field theory predicts infinite ξ at zero temperature in
all ribbons considered here.
The spin gapΔ is estimated by performing simulations at

different temperatures (always remaining close to the
ground state) and then fitting the expected low-temperature

(a) (b)

FIG. 2 (color online). (a) Spin-spin correlation length ξ and spin
gap Δ for different widths W, calculated for 12 μm long ribbons
at temperature T ¼ 10 mK (errors are smaller than symbol size).
Open circles show results for twice as long ribbons (i.e., 24 μm).
(b) Spin-spin correlations hszxAszx0Ai along the edge for different
widths W. For comparison, the black line shows the constant
polarization as expected from mean-field theory.
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behavior χðT → 0Þ ∝ expð−Δ=TÞ= ffiffiffiffi
T

p
to the obtained

uniform susceptibilities [26]. The spin gap behaves, as
expected, inversely to ξ; i.e., it decreases withW, including
the finite size effect forW ≳ 6 nm. It is remarkable that the
spin gap is tunable over more than 2 orders of magnitude
via a moderate change in W roughly by a factor of 3. Such
small spin gaps are below the resolution of conventional
fermionic QMC techniques.
Furthermore, it should be noted that the rugged behavior

of Δ and ξ as functions of W is not due to statistical or
numerical errors (the error bars are smaller than the
symbols used in Fig. 2), but has its origin in the special
geometry we use here (see Fig. 1). Because of the shifting
of the relative spatial spin positions at different edges [27],
the interedge coupling is not smooth in W.
Quantum dynamics.— For the discussion of the dynami-

cal aspects of EM we define the total edge spins
Ss ¼

P
xsxs, the total spin S ¼ SA þ SB, the operator for

the staggered magnetic moment Sst ¼ SA − SB, and the
Hamiltonian for an artificial symmetry breaking field
Hst ¼ −hstSzst. Because of the invariance of HH under spin
rotations, S2 ¼ SðSþ 1Þ is a good quantum number.
It is known that the ground state jΨ0i of a finite-size

quantum Heisenberg antiferromagnet, such asHH, is a spin
singlet (S ¼ 0). This is in perfect consistence with Lieb’s
theorem [20], which asserts that the ground state of Hl is a
singlet as well. However, the thermodynamic limit (TL) of
jΨ0i is problematic. The staggered magnetization is zero
hΨ0jSstjΨ0i ¼ 0, but its fluctuations hΨ0jS2

stjΨ0i ∼ L2 are
extensive. In the context of antiferromagnetism, such a
state is called nonergodic, and is not considered as a valid
ground state in the TL [28].
In contrast, a classical Néel-like state jΨNiwith opposite

spin polarizations at opposite edges is a more reasonable
candidate for a ground state of conventional antiferromag-
netic systems. It has an extensive staggered magnetization
with nonextensive fluctuations. In other words, jΨNi is
ergodic (i.e., behaves classically) and admissible as a
ground state for antiferromagnets in the TL. But jΨNi is
not an eigenstate for finite-sized systems. These two
opposing viewpoints have been discussed extensively for
ordinary antiferromagnets and their unification is now well
understood (see, e.g., Ref. [28]). Essentially, a tower of
excited states with S ¼ 0; 1;…, from which jΨNi is
formed, collapses in the TL and forms the macroscopic
ground-state degeneracy, which is needed for the sponta-
neous time-reversal and SUð2Þ symmetry breaking [29,30].
The remainder of this Letter is concerned with the
implementation of this principle in EM.
In particular, we discuss how the two opposing view-

points, (i) jΨ0i is a ground state but nonergodic and
(ii) jΨNi is ergodic but not an eigenstate, can be reconciled
from a quantum-dynamical perspective in the context of
EM. We define the Néel state jΨNi for our Heisenberg
theory as the ground state of HH þHst for hst chosen such

that hΨNjSzstjΨNi=L ¼ 0.95 [31]. For conventional anti-
ferromagnets in the TL, the corresponding hst approaches
zero and the usual definition limhst→0 limL→∞jΨðhstÞi of the
symmetry-broken ground state emerges.
As discussed above, jΨNi is not an eigenstate of HH and

will therefore decay on a certain time scale τqd (for reasons,
which will become clear below, “qd” stands for quantum
decay). For ordinary antiferromagnets, τqd diverges in the
TL. For EM, we extract τqd by analyzing the quench
dynamics of the staggered magnetic moment

DstðtÞ ¼ L−1hΨðtÞjSzstjΨðtÞi; (2)

where jΨðtÞi ¼ expð−itHHÞjΨNi. For general ribbon
lengths L and widths W it is very difficult to calculate
Dst. For ribbons with a high aspect ratio (L ≪ W),
however, the interedge antiferromagnetic couplings are
essentially independent of x − x0. If the ribbon width W
is twice its length L we have ξAF ≈ 1.7 L, so that the
antiferromagnetic couplings are approximately constant
JAFxx0 ≈ JAF ¼ ð5=LÞ3 K. Thus, as far as the antiferromag-
netic part of HH is concerned, HH is equal to the exactly
solvable Lieb-Mattis (LM) model of antiferromagnetism
[32]. We need to perform a further approximation in order
to be able to avail ourselves of the exact solution of the
Lieb-Mattis model, namely, the assumption of constant
ferromagnetic intraedge coupling. From the size scaling of
JFMxx0 , this assumption is not justifiable. However, we will
see that, making this assumption JFMxx0 ¼ JFM, the results are
completely independent of JFM, since all spins at the same
edge behave as one large superspin. Thus, we do not expect
this approximation to affect our results in a qualitative way.
The spectrum of the LM-approximated HH is E¼

JAFSðSþ1Þ=2−ðJAFþJFMÞPsSsðSsþ1Þ=2 [32]. Thus,
in the ground state we have S ¼ 0 and Ss ¼ Smax ¼
L=2. The crucial simplification due to the LM approxima-
tion lies in the fact that Ss is invariant under Hst. Thus, it is
sufficient to expand Hst in the basis jSi ¼ jS; SA; SBi
with Ss ¼ Smax. One finds HstjSi ¼ 2hstLðaSjS − 1iþ
aSþ1jSþ 1iÞ, where the coefficients aS are defined recur-
sively in Ref. [33], and S ¼ 0; 1;…; L. The full
Hamiltonian HH þHst, projected to the relevant subspace,
is thus an (Lþ 1)-dimensional matrix, which can easily be
diagonalized numerically for very large systems up to
L ∼ 104. The spectrum of the LM-approximated HH gives
rise to a further simplification: In the relevant sector SA ¼
SB ¼ Smax all excitation energies are multiples of the first
excitation energy JAF. Thus, the quench dynamics show a
full revival after tr ∼ ðJAFÞ−1, which provides us with an
upper bound for τqd.
Figure 3 shows DstðtÞ for different ribbon sizes L with a

fixed aspect ratio of 2. We define the decay time as the
first zero of DstðtÞ. Apparently, τqd ∼ 0.1tr over a wide
range of system sizes L. Note that this simple relation
between decay time and revival time is special to the LM
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approximation. In general, the excitation spectrum is
incommensurate and thus the revival time is, as usual,
exponentially large in the system size. Thus, we have
obtained a rough estimate for the quantum decay time of a
Néel-like state in a special ribbon geometry, namely,

τqd ∼ ðL=5Þ3ℏ=kBK ≈ ðL=5Þ3 ps: (3)

Quantum-classical crossover.—Up to now, we have
considered isolated ribbons. In order to determine whether
EM in an actual experiment is a quantum or a classical
phenomenon in which the spin polarization is zero or finite,
respectively, we need to consider the environment of the
ribbon, including the measurement process. The simplest
possible way of doing this is to collapse all the complicated
system-environment interactions into one single environ-
ment time scale τenv on which quantum coherence within
the ribbon is destroyed by the environment. One may also
understand τenv as the typical time between successive
measurements of the spin state of the ribbon by the
environment. Such a measurement will be local and will
certainly tend to destroy the subtle entanglement of the true
ground state jΨ0i, thereby preparing the ribbon in a
classical nonentangled state, say jΨNi. We have argued
that jΨNi will decay on a time scale τqd towards the
quantum ground state. However, if the time τenv between
two measurements is much shorter than τqd, the ribbon is
prepared into the same classical state jΨNi over and over
again and thus cannot decay. This phenomenon is known as
the quantum Zeno effect [19]. An ordinary bulk antiferro-
magnet behaves classically because τenv ≪ τqd. But in
graphene ribbons τqd can be tuned via the ribbon

dimensions over a wide range, from below a ps up to μs
and higher. The environment time τenv is expected in this
range as well. Thus, graphene-based nanostructures are
perfect candidates for the study of the delicate crossover
between classical and quantum behavior.
Conclusion.—Our study of edge magnetism clarifies the

role of quantum fluctuations, which are usually neglected
in mean-field approaches. They destroy the long-range spin
correlations by forming rung singlets, an effect which can
be seen clearly only in realistically large systems with≳104

carbon atoms and with methods beyond mean field.
Furthermore, we have contrasted the classical and quantum
nature of edge magnetism, for which the time scale of
decoherence by environment interactions is important. If
decoherence is faster than the quantum dynamics, the
system behaves classically and the notion of an edge spin
polarization makes sense. In the opposite case the system is
not a classical antiferromagnet but a subtle nonlocally
entangled spin singlet. We have argued that the geometry
determines the position on this quantum-classical cross-
over, for the study of which graphene is thus a perfect
playground. The feasibility of, e.g., scanning tunneling
spectroscopy to probe these different regimes should be
carefully considered. Furthermore, it will be important to
explore in future research the consequences of the strong
(quantum) spin fluctuations for the usability of edge
magnetism in spintronics applications.
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