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Using an ultracold gas of atoms, we have realized a quasi-two-dimensional Fermi system with widely
tunable s-wave interactions nearly in a ground state. Pressure and density are measured. The experiment
covers physically different regimes: weakly and strongly attractive Fermi gases and a Bose gas of tightly
bound pairs of fermions. In the Fermi regime of weak interactions, the pressure is systematically above a
Fermi-liquid-theory prediction, maybe due to mesoscopic effects. In the opposite Bose regime, the pressure
agrees with a bosonic mean-field scaling in a range beyond simplest expectations. In the strongly inter-
acting regime, measurements disagree with a purely 2D model. Reported data may serve for sensitive
testing of theoretical methods applicable across different quantum physics disciplines.
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Two-dimensional many-body quantum systems show
interesting physics and are technologically important. In
2D the phenomena of superfluidity and Bose condensation
become clearly separated [1]. High-temperature supercon-
ductivity is attributed to the 2D structure of the materials
[2]. Semiconductor and oxide interfaces containing 2D
electron gas are important for modern and prospective
electronics [3,4].
The concept of a Bardeen-Cooper-Schrieffer (BCS) to

Bose-Einstein-condensate (BEC) crossover [5,6] gives a
unified view at some Fermi and Bose systems: By varying
interactions, a gas of fermions obeying the BCS or similar
model may be smoothly converted into a gas of pointlike
bosons, which are pairs of the initial fermions. Such a
crossover has been predicted for excitons [7] and quarks
[8] and realized in a 3D gas of ultracold fermionic atoms
with s-wave interactions [9]. Measurements on this system
have stimulated development of the many-body quantum
theory [5,6], especially for the challenging regime of strong
interactions which lies between the BCS and Bose
asymptotes.
The 2D BCS-BEC crossover for fermions with s-wave

interactions is the focus of this Letter. The strongly inter-
acting regime of this crossover may be relevant to high-
temperature superconductors: While the superconducting
phase of the cuprates has d-wave symmetry [2], the s-wave
symmetry has been detected in the pseudogap phase [10].
Exploring the Bose part of the crossover complements stud-
ies of interacting 2D Bose gases [11] by reaching stronger
interactions. Studying the fermionic side may add to the
understanding of 2D Fermi liquids. Failure of the mean-
field description is an example of theoretical challenges
in 2D: In 3D the BCS-BEC crossover is qualitatively mod-
eled by a mean field of Cooper pairs (Fig. 5 of Ref. [5]),
while in 2D a similar model is qualitatively incorrect, pre-
dicting an interaction-independent equation of state at zero
temperature [12].

The pure 2D paradigm assumes motion strictly in the xy
plane and no z dependence in interactions. In reality, par-
ticles experience zero-point oscillations along z and interact
via 3D potentials. The term “quasi-2D” generally indicates
some departure from the pure 2D approximation while the
kinematics remains close to 2D. For example, in most cup-
rate superconductors, the 2D picture is altered by interlayer
hopping of electrons, but pure 2D models are widespread
[2]. An example of a 2D model insufficiency is 3He on a
substrate, where an increase of zero-point oscillations rel-
ative to the atom-atom interaction range brings about the
formation of a self-bound liquid [13].
Ultracold Fermi atoms [5,14] are well suited for studying

the crossover and testing the applicability of purely 2D
models in quasi-2D (Q2D). The atomic system allows
an ab initio description because of purity and the knowl-
edge of microscopic and external parameters; e.g., 2D
kinematics is achieved by holding atoms in the lowest state
of the precisely known potential mω2

zz2=2 [15], where m is
the atom mass. The range of atom-atom interaction is
nearly zero, which has two consequences: (i) The s-wave
collisions are quasi-2D rather than 2D, because at distances
≪ lz ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωz

p
the two-atom wave function is deter-

mined by the 3D scattering length a; (ii) the interaction
may be mapped onto s-wave scattering by a purely 2D
potential [16]; i.e., purely 2D collisions are simulated.
There is a controversy, however, in calculating a2, the
corresponding 2D s-wave scattering length, which we
resolve below.
We find a2 by equating the amplitude of 2D scattering

f2Dðq; a2Þ ¼ − 2π

lnðqa2eγE=2iÞ
(1)

to the scattering amplitude of atoms interacting via 3D
contact potential and confined to the lowest state of the
potential mω2

zz2=2 [16]:
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fQ2Dðq; a; lzÞ ¼
2π

ffiffiffi
π

p
lz=aþ wðq2l2zÞ=2

: (2)

Here γE ≃ 0.577 is Euler’s constant, wðξÞ is defined in
Refs. [16,17], and ℏq ¼ ffiffiffiffiffiffiffiffiffiffiffi

2 μm
p

is the relative momentum
expressed via the chemical potential μ.
In the alternative approach, similar to Refs. [18,19] and

not adopted here, a2 is found from binding energy E3Dbound

of the 3D dimer molecule in the potential ð2mÞω2
zz2=2

[Eq. (17) of Ref. [17]], by equating E3Dbound to the binding
energy in a 2D potential: E3Dbound ¼ −4ℏ2=me2γEa22.
In the limit μ ≪ ℏωz, these two approaches give the

same a2 for small a < 0. The controversy is for small
a > 0, which is seen by considering the mean field of a
uniform 2D gas of atoms. The leading-order term is
−2πℏ2n2=½m lnða2 ffiffiffiffiffi

n2
p Þ� [20]. Plugging in a2 derived

from f2D ¼ fQ2D, one obtains the mean-field valueffiffiffiffiffiffi
4π

p
ℏ2n2a=ðmlzÞ in agreement with Ref. [21], while the

bound-state-based method yields a much larger a2 overesti-
mating the mean field. This motivates the choice of the
amplitude-based approach.
While two-body atom-atom collisions are exactly

mapped onto purely 2D interactions, the effect of
many-body interactions on dimensionality is unclear.
Potentially, strong many-body interactions may alter 2D
kinematics by populating excited states of motion along
z, making the system quasi-2D.
The state of tunable atomic Fermi gases with predomi-

nantly 2D kinematics has been studied by means of radio-
frequency spectroscopy [18, 19, 22, 23], measurement of
cloud size [24], and observing collective modes [25].
Experiments [18,22] have shown that reduced dimension-
ality makes pairing more favorable. In Ref. [18], pair-
breaking energy in a strongly interacting Fermi system
is in agreement with the mean field of Cooper pairs.
Alternatively, in Ref. [23], the excitations are inconsistent
with the mean-field interpretation and the system is
described as a gas of noninteracting polarons. A quantita-
tive interpretation of these and other finite-temperature
studies in the Bose and strongly interacting regimes is com-
plicated, because in 2D quantitative thermometry has been
available only for weakly interacting Fermi gas [15,18].
Observation of many-body effects by means of rf spectros-
copy puts stringent requirements on experimental preci-
sion, because many-body physics is masked by one- and
two-body effects.
In this Letter, we report on the controllable realization

and study of the quasi-2D BCS-BEC crossover. The ther-
mometry limitations are circumvented by preparing the sys-
tem nearly in the ground state. The 2D pressure per spin
state P2 and the respective numerical planar density n2
are measured. Local thermodynamic quantities have been
measured in the 3D BCS-BEC crossover [26,27]. In 2D,
unlike in 3D, such quantities are sensitive to beyond-
mean-field effects even at the qualitative level. In particular,

as the system becomes more bosonic, the pressure should
drop, contrary to the mean-field expectations [12].
The apparatus and gas preparation are generally described

in Refs. [15,28] with relevant details elaborated in Ref. [17].
Lithium-6 atoms are equally populating the two lowest-
energy spin states j1i and j2i. The s-wave interactions are
controlled by external magnetic field B, by using a broad
Fano-Feshbach resonance, which in 3D lies at B ¼ 832 G
[29]. The pancake-shaped trapping potentialV is nearly har-
monic: Vðρ⃗; zÞ≃ ðω2

xx2 þ ω2
yy2 þ ω2

zz2Þm=2, and tight
along z: ωz=ω⊥ ¼ 52:2 ≫ 1, where ω⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffi

ωxωy
p and

ωy=ωx ¼ 1.50. A series of such nearly identical potentials
is formedby antinodes of a standingwave; 100–200 adjacent
traps are loaded. The longitudinal frequency is chosen in
the range ωz=2π ¼ 2.28–13.7 kHz corresponding to the
lattice depth V0 ¼ ð1.9–11:6Þℏωz. The number of atoms
per spin state N varied between 180 and 1040. This gives
the noninteracting-gas Fermi energy EF ¼ ℏω⊥

ffiffiffiffiffiffiffi
2N

p ¼
ð0.36–0.87Þℏωz.
The pressure and density are measured in the locally

homogeneous part of the cloud, near the center ρ ¼ 0,
by analyzing the linear density profiles n1ðxÞ as the one
in Fig. 1(a). These profiles are obtained by imaging [17]
the flat clouds from a side, along the y direction, which
integrates the density giving the linear distribution
n1ðxÞ ¼

R
n2ðρ⃗Þdy. We average n1ðxÞ over 15–30 nearly

identical clouds.
The local pressure is obtained from the force balance

equation ∇⊥P2ðρ⃗Þ ¼ −n2ðρ⃗Þ∇⊥Vðρ⃗; zÞ. Integrating, one
finds the central pressure P2 ¼ mω2⊥Nð1 −mω2

xhx2i=
V0Þ=2π, where the transverse potential is expanded up to
the quartic term and hx2i ¼ ð1=NÞ R x2n1ðxÞdx. The planar
density profile n2ðρ⃗Þ is found by performing, first, noise
filtering of n1ðxÞ and then the inverse Abel transform
adjusted for elliptic clouds [17]. In Fig. 1(b), one may
see the planar density distribution in stretched coordinates
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FIG. 1 (color online). (a) Linear density profile n1ðxÞ, no noise
filtering applied. Dots are the data for a2

ffiffiffiffiffi
n2

p ¼ 0.89
(B ¼ 850 G, N ¼ 500� 10, lz ¼ −0.29a). Solid and dashed
curves are the fits by Thomas-Fermi and Gaussian distribution,
respectively. The Gaussian fit is off, which proves deep degen-
eracy. (b) Surface density n2ð~ρÞ derived from noise-filtered
n1ðxÞ. Dots are the data. The curve is the fit of the parabola
n2ð~ρÞ ¼ n2 − ~ρ2n002=2 to the data, which yields the central density
n2 ≡ n2ð~ρ ¼ 0Þ.

PRL 112, 045301 (2014) P HY S I CA L R EV I EW LE T T ER S week ending
31 JANUARY 2014

045301-2



~⃗ρ ¼ ðx; yωy=ωxÞ, in which the clouds are cylindrically
symmetric. For Eq. (2), the value of μ is needed. The
scale-invariant assumption μ ∝ n2 together with dP2 ¼
n2dμ gives the estimate μ ¼ EF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2=P2 ideal

p
, where

P2 ideal ¼ πn22ℏ
2=m is the pressure of an ideal Fermi gas

of the same density n2. This estimate is of sufficient pre-
cision, because departure from μ ∝ n2 is small [17] and
the function wðξÞ is slow.
The dependence of the normalized pressure on the inter-

action parameter a2
ffiffiffiffiffi
n2

p
is shown in Fig. 2, which is the

main result of the Letter. The error bars include statistical
and systematic errors [17]. All known systematic effects,
except finite temperature, are corrected for as explained
in Ref. [17].
Interaction parameter a2

ffiffiffiffiffi
n2

p
is the ratio of the scattering

spatial scale to the interparticle distance. Three regimes
may be distinguished: (i) For a2

ffiffiffiffiffi
n2

p ≫ 1, the system is fer-
mionic because the Fermi pressure dominates over the
interactions; (ii) at a2

ffiffiffiffiffi
n2

p ∼ 1, the interaction energy is
comparable to the Fermi energy, and the system is strongly
interacting; (iii) for a2

ffiffiffiffiffi
n2

p ≪ 1, the pairing energy is even
larger, and the fermions are bound into compact bosonic
pairs; the interaction of pairs is small in comparison to
the Fermi energy; therefore, the system is a weakly repul-
sive Bose gas of molecules. The borders between regimes
may be taken approximately at a2

ffiffiffiffiffi
n2

p ¼ 1=4 and 4

(Fig. 2). In further discussion, the borders are attached
to the data points, which are closest to these two values.
In the Fermi region a2

ffiffiffiffiffi
n2

p ≥ 4.9, the ratio P2=P2 ideal is
approaching unity as expected (Fig. 2). Temperatures are
evenly distributed in the range T ¼ ð0.02–0.15ÞEF, with
a confidence interval ≃� 0.03EF in each measurement.
The temperature in the units of the local Fermi energy εF ¼
2πn2ℏ2=m is also known, because εF ≃ EF in this regime.
At T ¼ 0.08εF for a weakly attractive Fermi gas, the gap
should be closed for a2

ffiffiffiffiffi
n2

p ≥ 0.54 [32]. Thus, in the Fermi
region the system is likely a Fermi liquid.
For a2

ffiffiffiffiffi
n2

p ≥ 4.9, the pressure on average is 10% above
the prediction for a homogeneous 2D Fermi liquid [30],
however. Neither an unaccounted population of excited
states for the motion along z nor a pairing gap would
explain higher pressure, because these effects may only
reduce P2=P2 ideal. Finite temperature cannot be the reason
either: For an ideal uniform Fermi gas, the pressure rises by
2% when T=εF increases from 0 to 0.08, which gives an
estimate for the effect of temperature on the Fermi-liquid
pressure. The observed high pressure could be attributed
to the mesoscopic character of the system at large a2 values.
Whenever a2 is larger than the rms cloud size

ffiffiffiffiffiffiffiffiffi
hρ2i

p
, the

interaction is effectively suppressed, which tunes the gas
closer to noninteracting. In the Fermi regime, at the cloud
center a2=

ffiffiffiffiffiffiffiffiffi
hρ2i

p ≃ a2
ffiffiffiffiffi
n2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.5π=N

p
. For N ¼ 500,

a2
ffiffiffiffiffi
n2

p ¼ 10 is the crossover point between the locally
homogeneous and mesoscopic regimes. According to this
criterion, in Ref. [19] the system is mesoscopic for the
weakest interactions, but one-particle excitations are found
to agree with a model of a finite-temperature locally homo-
geneous Fermi liquid, which contradicts our pressure
measurements.
As the system becomesmore bosonic, the ratioP2=P2 ideal

decreases following qualitative expectations (Fig. 2). In the
Bose regime a2

ffiffiffiffiffi
n2

p ≪ 1, we find the scaling P2=P2 ideal ∝
a=lz as seen in Fig. 3,where additional data are also shown in
the deep Bose regime a2

ffiffiffiffiffi
n2

p
< 0.01. To understand this

scaling, one may note that the leading term in the pressure
of Bose molecules should be the same as for pointlike
bosons: P2Bose ¼ −P2 ideal= lnða22moln2Þ [20]. Here a2mol is
the 2D scattering length for molecule-molecule collisions,
which may be related to the respective 3D scattering length
amol ¼ 0.6a [33] by equating the scattering amplitudes
f2Dð2q;a2molÞ ¼fQ2Dð2q;amol;lz=

ffiffiffi
2

p Þ. The pressure calcu-
lated for each datum as P2 ¼ P2Bose=2 is shown in Fig. 3 as
the broken solid line. To further simplify P2Bose, one may
take the low-energy limit 2μ ≪ ℏωz, yielding a2mol≃
2.09lz expð−

ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp ðlz=amolÞÞ, and the limit of unmodi-
fied 3D interactions amol ≪ lz, which all together give
P2Bose ≃ 2P2 idealðamol=lz

ffiffiffiffiffiffi
8π

p Þ shown by the dashed line
in Fig. 3. This expression gives the scaling
P2=P2 ideal ∝ a=lz, though in the data the scaling coefficient
is 19% higher. Unexpectedly, the data agree with this
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FIG. 2 (color online). Normalized local pressure vs interaction
parameter. Data are coded in color by the atom number N: small-
est N ¼ 220–350 [EF ¼ ð0.40–0.51Þℏωz] are shown by empty
red circles, intermediate N ¼ 410–560 [EF ¼ ð0.54–0.64Þℏωz]
by green circles with a thicker border, and largest N ¼
640–910 [EF ¼ ð0.69–0.82Þℏωz] by blue solid dots. Solid red
curve: Smooth approximation of the pure 2D Monte Carlo sim-
ulation [12]. Dashed curve: Model [30] of a homogeneous 2D
Fermi liquid at T ¼ 0. Dotted line: Mean-field model based
on the BCS state [31]. The vertical dash-dotted line separates data
into two regions: a2 < lz on the left and a2 > lz on the right. The
data in table form are in Ref. [17].
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bosonic mean-field scaling beyond amol ≪ lz, up to
amol=lz ¼ 0.96 (a2

ffiffiffiffiffi
n2

p ¼ 0.27) or, in the language of the
bosonic coupling parameter g ¼ −2π= lnða2mol

ffiffiffiffiffi
n2

p Þ [11],
up to g ¼ 2.9. The agreement extends into the border with
the strongly interacting region,where the picture of pointlike
bosons is questionable.
In the Bose regime a2

ffiffiffiffiffi
n2

p ≤ 0.22, to assure the
closeness to the ground state, we measure the temperature
fitting the n1ðxÞ data by bimodal distribution, which is the
sum of a Gaussian and zero-temperature Thomas-Fermi
distribution ð8N0=3πRTFÞð1 − x2=R2

TFÞ3=2, where RTF
and N0 are varied. The temperature is inferred from the
ideal-Bose-gas relation N0=N ¼ 1 − ðT=TcrÞ2, where
Tcr ¼ EF

ffiffiffi
3

p
=π. This procedure may overestimate the tem-

perature [34]. Fitting consistently yields T < 0.5Tcr. To
find T in the local units of εF, we note that
EF=εF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2=P2 ideal

p
. Combining this with the asymptote

P2=P2 ideal ¼ 0.14a=lz seen in Fig. 3, we obtain the upper
bound T=εF < 0.1

ffiffiffiffiffiffiffiffiffi
a=lz

p
. For the absolute majority of the

bosonic data, the temperature is below the Berezinskii-
Kosterlitz-Thouless transition calculated for weakly inter-
acting bosons [35]. In a few cases, which we checked in
the deep Bose regime, BECs are observed: After release
of the gas from the lattice and free expansion for a few mil-
liseconds, straight interference fringes are clearly visible.
Indeed, finite Bose systems are predicted to condense
[20,36]. The interference, however, has not been studied
systematically for all a2

ffiffiffiffiffi
n2

p
. Since T=εF is low, the actual

phase state, whether Berezinskii-Kosterlitz-Thouless or
BEC, may not affect the pressure significantly: The pres-
sure is continuous over these transitions and, therefore,
close to the ground-state value.
In the strongly interacting regime 0.27 ≤ a2

ffiffiffiffiffi
n2

p ≤ 3.3,
quantitative thermometry is presently unavailable. For
demonstrating closeness to the ground state, we act along

the lines of empirical thermometry [37]. The density pro-
files resemble those of the ideal Fermi gas: For the lowest
temperatures the edges are sharp, while as T increases the
shape transforms into a Gaussian. By fitting the ideal Fermi
gas profile [15] to the data n1ðxÞ, as in Fig. 1(a), we find the
empirical temperature parameter evenly distributed in the
range ðT=EFÞfit ¼ 0.02–0.16, indicating deep degeneracy.
For the regime of strong interactions a2

ffiffiffiffiffi
n2

p ∼ 1, in Fig. 2,
one may compare the pressure to the prediction of zero-tem-
perature Monte Carlo model [12] for a uniform gas with 2D
atom-atom interactions. Some data are lying on the
Monte Carlo curve. When the overall trend is considered,
one may see that the slope of the data is steeper (also in
Fig. 7 of Ref. [17]). Contrary to our findings, measurements
of the cloud size [24] in the strongly interacting regime are
reported to quantitatively agreewith theMonte Carlo results
[12]. If the data of Fig. 2 are plotted by using the definition
of a2 adopted in Ref. [24], the pressure lies systematically
belowtheMonteCarlocurve inmostof thestrong-interaction
region (Fig. 8 of Ref. [17]). In Ref. [24], the system might
be significantly away from the ground state: Unlike here in
Fig.1(a), imagesof the trappedcloud inRef. [24]donot show
the sharp edge.
In the strongly interacting and Fermi regimes of our

experiment, the chemical potential μ is less than but com-
parable to ℏωz. To see whether the closeness of μ to the
excited state matters, we have done measurements with
different atom numbers as indicated by color coding in
Figs. 2 and 3. Within current precision, there is no depend-
ence on N or EF=ℏωz. In addition, the data of Fig. 2 are
fitted by a smooth curve p2 fitða2 ffiffiffiffiffi

n2
p Þ in the range

0.055 ≤ a2
ffiffiffiffiffi
n2

p ≤ 60. In Fig. 4, we show the ratio of the
measured values to this fit: There are no systematic shifts
between the points with low and high μ=ℏωz. Also, we rule
out two possible sources for the excited state population:
(i) There are no thermal excitations [15]; (ii) for two-
fermion collisions, scattering into the upper states of
motion along z is prohibited by energy and parity conser-
vation, because the collision kinetic energy 2μ is < 2ℏωz.
By ruling out the simplest reasons of the excited state
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FIG. 3 (color online). Demonstration of linear scaling
P2=P2 ideal ∝ a=lz in the Bose regime. Markers: The data
ðP2=P2 idealÞ=ða=lzÞ vs the interaction parameter. Color coding
and the vertical dash-dotted line are the same as in Fig. 2. Dashed
horizontal line: Model for pointlike molecular bosons with 3D
interactions, P2 ¼ P2 idealð0.6a=lz
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p Þ. The solid line connects
points calculated via P2 ¼ P2Bose=2.
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FIG. 4 (color online). Ratio of the measured normalized
pressure to the respective values of a smooth fitting function
[17] vs the normalized chemical potential. Color coding is the
same as in Fig. 2.
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population, we do not exclude such a population com-
pletely, because it may be induced by strong interactions.
Such quasi-2D effects are a potential reason for deviation
from the pure 2D Monte Carlo model [12].
In conclusion, a widely tunable quasi-2D Fermi system

nearly in the ground state has been realized experimentally.
The pressure measurements may be used for sensitive test-
ing of many-body theories including the question of appli-
cability of purely 2D models in strongly interacting
systems.

We are thankful to D. S. Petrov for discussions. We
acknowledge the financial support by the programs of
the Presidium of Russian Academy of Sciences
“Quantum mesoscopic and disordered structures” and
“Nonlinear dynamics” and Russian Foundation for Basic
Research (Grants No. 11-02-01324-a, No. 11-02-12282-
ofi-m-2011, and No. 12-02-31804 mol_a).

*turlapov@appl.sci‑nnov.ru
[1] V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).
[2] V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Rep.

349, 1 (2001).
[3] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54,

437 (1982).
[4] J. Mannhart, D. H. A. Blank, H. Y. Hwang, A. J. Millis, and

J.-M. Triscone, MRS Bull. 33, 1027 (2008).
[5] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.

Phys. 80, 1215 (2008).
[6] M. Randeria and E. Taylor, arXiv:1306.5785.
[7] L. V. Keldysh and A. N. Kozlov, Sov. Phys. JETP 27, 521

(1968).
[8] B. O. Kerbikov, Phys. At. Nucl. 65, 1918 (2002).
[9] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin,

J. H. Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 120401
(2004).

[10] S. Sakai, S. Blanc, M. Civelli, Y. Gallais, M. Cazayous,
M.-A. Méasson, J. S. Wen, Z. J. Xu, G. D. Gu,
G. Sangiovanni, Y.Motome, K.Held, A. Sacuto, A. Georges,
and M. Imada, Phys. Rev. Lett. 111, 107001 (2013).

[11] L.-C. Ha, C.-L. Hung, X. Zhang, U. Eismann, S.-K. Tung,
and C. Chin, Phys. Rev. Lett. 110, 145302 (2013).

[12] G. Bertaina and S. Giorgini, Phys. Rev. Lett. 106, 110403
(2011).

[13] M. Ruggeri, S. Moroni, and M. Boninsegni, Phys. Rev. Lett.
111, 045303 (2013).

[14] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,
885 (2008).

[15] K. Martiyanov, V. Makhalov, and A. Turlapov, Phys. Rev.
Lett. 105, 030404 (2010).

[16] D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64,
012706 (2001).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.045301 for gas
preparation; details on finding the planar density profile
n2ðρ⃗Þ; error analysis; wðξÞ definition; fit to the data; data
representation for alternative definitions of a2; and data
and experimental parameters in table form.

[18] M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, and
M. Köhl, Nature (London) 480, 75 (2011).

[19] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, M. Köhl,
C. Berthod, and T. Giamarchi, Phys. Rev. Lett. 109,
130403 (2012).

[20] M. Schick, Phys. Rev. A 3, 1067 (1971).
[21] L. Pricoupenko, Phys. Rev. A 70, 013601 (2004).
[22] A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, and

M.W. Zwierlein, Phys. Rev. Lett. 108, 045302 (2012).
[23] Y. Zhang, W. Ong, I. Arakelyan, and J. E. Thomas, Phys.

Rev. Lett. 108, 235302 (2012).
[24] A. A. Orel, P. Dyke, M. Delehaye, C. J. Vale, and H. Hu,

New J. Phys. 13, 113032 (2011).
[25] E. Vogt, M. Feld, B. Fröhlich, D. Pertot, M. Koschorreck,

and M. Köhl, Phys. Rev. Lett. 108, 070404 (2012).
[26] J. Joseph, B. Clancy, L. Luo, J. Kinast, A. Turlapov, and

J. E. Thomas, Phys. Rev. Lett. 98, 170401 (2007).
[27] N. Navon, S. Nascimbene, F. Chevy, and C. Salomon,

Science 328, 729 (2010).
[28] K. A. Martiyanov, V. B. Makhalov, and A. V. Turlapov,

JETP Lett. 91, 369 (2010).
[29] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S. Julienne,

and J. M. Hutson, Phys. Rev. Lett. 110, 135301 (2013).
[30] P. Bloom, Phys. Rev. B 12, 125 (1975).
[31] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. Lett.

62, 981 (1989).
[32] D. S. Petrov, M. A. Baranov, and G. V. Shlyapnikov, Phys.

Rev. A 67, 031601 (2003).
[33] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev.

Lett. 93, 090404 (2004).
[34] Z. Hadzibabic, P. Krüger, M. Cheneau, S. R. Rath, and

J. Dalibard, New J. Phys. 10, 045006 (2008).
[35] N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Phys. Rev.

Lett. 87, 270402 (2001).
[36] Y. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Sov.

Phys. JETP 66, 314 (1987).
[37] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and

K. Levin, Science 307, 1296 (2005).

PRL 112, 045301 (2014) P HY S I CA L R EV I EW LE T T ER S week ending
31 JANUARY 2014

045301-5

http://dx.doi.org/10.1016/S0370-1573(00)00114-9
http://dx.doi.org/10.1016/S0370-1573(00)00114-9
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1103/RevModPhys.54.437
http://dx.doi.org/10.1557/mrs2008.222
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1134/1.1515856
http://dx.doi.org/10.1103/PhysRevLett.92.120401
http://dx.doi.org/10.1103/PhysRevLett.92.120401
http://dx.doi.org/10.1103/PhysRevLett.111.107001
http://dx.doi.org/10.1103/PhysRevLett.110.145302
http://dx.doi.org/10.1103/PhysRevLett.106.110403
http://dx.doi.org/10.1103/PhysRevLett.106.110403
http://dx.doi.org/10.1103/PhysRevLett.111.045303
http://dx.doi.org/10.1103/PhysRevLett.111.045303
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.105.030404
http://dx.doi.org/10.1103/PhysRevLett.105.030404
http://dx.doi.org/10.1103/PhysRevA.64.012706
http://dx.doi.org/10.1103/PhysRevA.64.012706
http://http://link.aps.org/supplemental/10.1103/PhysRevLett.112.045301
http://http://link.aps.org/supplemental/10.1103/PhysRevLett.112.045301
http://http://link.aps.org/supplemental/10.1103/PhysRevLett.112.045301
http://http://link.aps.org/supplemental/10.1103/PhysRevLett.112.045301
http://http://link.aps.org/supplemental/10.1103/PhysRevLett.112.045301
http://http://link.aps.org/supplemental/10.1103/PhysRevLett.112.045301
http://http://link.aps.org/supplemental/10.1103/PhysRevLett.112.045301
http://dx.doi.org/10.1038/nature10627
http://dx.doi.org/10.1103/PhysRevLett.109.130403
http://dx.doi.org/10.1103/PhysRevLett.109.130403
http://dx.doi.org/10.1103/PhysRevA.3.1067
http://dx.doi.org/10.1103/PhysRevA.70.013601
http://dx.doi.org/10.1103/PhysRevLett.108.045302
http://dx.doi.org/10.1103/PhysRevLett.108.235302
http://dx.doi.org/10.1103/PhysRevLett.108.235302
http://dx.doi.org/10.1088/1367-2630/13/11/113032
http://dx.doi.org/10.1103/PhysRevLett.108.070404
http://dx.doi.org/10.1103/PhysRevLett.98.170401
http://dx.doi.org/10.1126/science.1187582
http://dx.doi.org/10.1134/S0021364010080011
http://dx.doi.org/10.1103/PhysRevLett.110.135301
http://dx.doi.org/10.1103/PhysRevB.12.125
http://dx.doi.org/10.1103/PhysRevLett.62.981
http://dx.doi.org/10.1103/PhysRevLett.62.981
http://dx.doi.org/10.1103/PhysRevA.67.031601
http://dx.doi.org/10.1103/PhysRevA.67.031601
http://dx.doi.org/10.1103/PhysRevLett.93.090404
http://dx.doi.org/10.1103/PhysRevLett.93.090404
http://dx.doi.org/10.1088/1367-2630/10/4/045006
http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1103/PhysRevLett.87.270402
http://dx.doi.org/10.1126/science.1109220

