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We introduce a class of unidirectional lasing modes associated with the frozen mode regime of
nonreciprocal slow-wave structures. Such asymmetric modes can only exist in cavities with broken time-
reversal and space inversion symmetries. Their lasing frequency coincides with a spectral stationary
inflection point of the underlying passive structure and is virtually independent of its size. These
unidirectional lasers can be indispensable components of photonic integrated circuitry.
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In the lasing process, a cavity with gain produces
outgoing optical fields with a definite frequency and phase
relationship, without being illuminated by coherent incom-
ing fields at that frequency [1]. Instead, the laser is coupled
to an energy source (the pump) that inverts the electron
population of the gain medium, causing the onset of
coherent radiation at a threshold value of the pump. In
most cases the first lasing mode can be associated with a
passive cavity mode. The latter is determined by the
geometry and the electromagnetic constitutive parameters
ϵ − μ of the passive cavity. Above the first lasing threshold,
lasers have to be treated as nonlinear systems [2], but up to
the first threshold they satisfy the linear Maxwell equations
with a negative imaginary part of the refractive index,
generated by the population inversion due to the pump [1].
This simplification allows for a linear treatment of thresh-
old modes within a scattering matrix formalism [3].
In this Letter, using scattering formalism, we introduce a

class of unidirectional lasing modes emerging from
frequencies associated to spectrally asymmetric stationary
inflection points of the underlying passive photonic struc-
ture. A distinctive characteristic of these modes is that, in
contrast to traditional Fabry-Perot (FP) resonances, they are
virtually independent of the size and geometry of the
confined photonic structure [4]. Utilizing these modes
we propose to create a mirrorless unidirectional laser
(MUL) which emits the outgoing optical field into a single
direction. Incorporating a MUL in an optical ring resonator
can result in various functionalities. Potential applications
include optical ring gyroscopes in which a beat frequency
between two oppositely directed unidirectional ring diode
lasers is detected to measure the rotation rate, optical logic
elements in which the direction of lasing in the ring is the
logic state of the device, and optical signal routing elements
for photonic integrated circuits where the signals are routed
around a ring cavity towards a specific output coupler.
The concept of frozen modes and electromagnetic

unidirectionality first emerged within the context of spec-
tral asymmetry of nonreciprocal periodic structures [5–7].
In this regard it was recognized that magnetic photonic

crystals satisfying certain symmetry conditions [7,8] can
develop a strong spectral asymmetry Ωðk⃗Þ ≠ Ωð−k⃗Þ. An
example case of such periodic arrangement is shown in
Fig. 1. The basic unit consists of three components: a
central magnetic layer “sandwiched” between two mis-
aligned anisotropic layers. The magnetic layer (gray layer
in Fig. 1) induces magnetic nonreciprocity which is
associated with the breaking of time reversal symmetry
due to a static magnetic field or spontaneous magnetization.
However, breaking time-reversal symmetry is not sufficient
to obtain spectral asymmetry. The symmetry analysis [7,8]
shows that the absence of space inversion is also required.
This is achieved with the use of two birefringent layers
(blue and red layers in Fig. 1).
The constitutive tensors ϵ̂1;2 − μ̂ of the nonmagnetic

layers are assumed to be

ϵ̂1;2¼
2
4ϵAþδ cosð2ϕ1;2Þ δ sinð2ϕ1;2Þ 0

δ sinð2ϕ1;2Þ ϵA−δ cosð2ϕ1;2Þ 0

0 0 ϵzz

3
5; μ̂¼ 1̂;

(1)

where δ describes the magnitude of in-plane anisotropy
and the angle ϕ1;2 defines the orientation of the principle

FIG. 1 (color online). Schematic of a mirrorless unidirectional
laser structure. The basic unit includes three layers—a gyrotropic
magnetic element layer (gray) sandwiched between two mis-
aligned anisotropic layers (red and blue). The misalignment angle
ϕ1 − ϕ2 must be different from 0 and π=2.
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axes in the xy plane for each of the two nonmagnetic layers.
The corresponding constitutive parameters for the magnetic
layer are

ϵ̂ ¼
2
4 ϵF iα 0

−iα ϵF 0

0 0 ϵzz

3
5; μ̂ ¼

2
4 μxx iβ 0

−iβ μxx 0

0 0 μzz

3
5; (2)

The gyrotropic parameters α, β are responsible for the
magnetic Faraday rotation [9]. In the simulations below we
use the same set of physical parameters as in [8].
Specifically, ϵA ¼ 43.85, δ ¼ 42.64, ϕ1 ¼ π=4, ϕ2 ¼ 0,
ϵF ¼ 30.525, α ¼ 0.625, β ¼ 1.24317, and
μxx ¼ 1.29969. The frequency Ω is measured in units of
Ω0 ¼ c=L, i.e., ω≡Ω=Ω0, where c is the speed of light in
vacuum and L ¼ LA is the thickness of the dielectric layers.
The width of the ferromagnetic layer is LF ¼ 0.45L.
Without loss of generality we assume that L ¼ 1.
The dispersion relation ωðk⃗Þ≡Ωðk⃗Þ=Ω0 for the infinite

periodic stack of Fig. 1 can be calculated numerically using
a standard transfer matrix approach [8,10]. We find that
ωðk⃗Þ displays asymmetry with respect to the Bloch wave
vector k⃗. For a given structural geometry, the degree of the
spectral asymmetry depends on the magnitude of nonre-
ciprocal circular birefringence of the magnetic layer and
linear birefringence of the misaligned dielectric layers. If
either of the two birefringences is too small, or too large,
the spectral asymmetry becomes small. The choice of the
numerical parameters allows us to clearly demonstrate the
effect of unidirectional lasing using the simplest example of
a periodic layered structure shown in Fig. 1. At optical
frequencies, very similar results can be achieved by turning
the open cavity of Fig. 1 into a ringlike structure [11].
The property of spectral asymmetry has various physical

consequences, one of which is the possibility of unidirec-
tional wave propagation [8]. Let us consider a transverse
monochromatic wave propagating along the symmetry
direction ẑ of the gyrotropic photonic crystal. The Bloch
wave vector k⃗ ¼ kẑ, as well as the group velocity v⃗ðk⃗Þ≡
∂ωðk⃗Þ=∂k⃗ are parallel to z. In Fig. 2(a) we see that one of
the spectral branches ωðkÞ develops a stationary inflection
point (SIP) for which

∂ω
∂k

����
k¼k0

¼ 0;
∂2ω

∂k2
����
k¼k0

¼ 0;
∂3ω

∂k3
����
k¼k0

≠ 0: (3)

An example of a SIP occurring at ω0 ≈ 5463.5 is marked in
Fig. 2(a) with a circle. At this frequency there are two
propagating Bloch waves: one with k0 ≈ 0.613 and the
other with k1 ≈ −2.452. Obviously, only one of the two
waves can transfer electromagnetic energy—the one with
k ¼ k1 and corresponding group velocity pointing in the
positive ẑ direction, i.e., v⃗ðk1Þ > 0. The Bloch eigenmode
with k ¼ k0 has zero group velocity v⃗ðk0Þ ¼ 0 and, there-
fore, does not transfer energy. The latter propagating mode

is associated with a stationary inflection point Eq. (3) and
referred to as the “frozen” mode. Thus a photonic crystal
with the dispersion relation similar to that in
Fig. 2(a) displays the property of electromagnetic unidir-
ectionality at ω ¼ ω0. Such a remarkable effect is an
extreme manifestation of the spectral asymmetry [8].
Next we turn to the analysis of the open structure and the

emergence of unidirectional lasing modes. It can be
rigorously shown within semiclassical laser theory that
the first lasing mode in any cavity is an eigenvector of the
electromagnetic scattering matrix (S matrix) with an
infinite eigenvalue; i.e., lasing occurs when a pole of the
S matrix is pulled “up” to the real axis by including gain as
a negative imaginary part of the refractive index [3]. We,
therefore, proceed to evaluate the scattering matrix asso-
ciated with the open photonic structure of Fig. 1.
The electric E⃗ðr⃗Þ and magnetic H⃗ðr⃗Þ fields are desig-

nated by the time-harmonic Maxwell equations:

∇ × E⃗ðr⃗Þ ¼ i
ω

c
μ̂H⃗ðr⃗Þ; ∇ × H⃗ðr⃗Þ ¼ −iω

c
ε̂E⃗ðr⃗Þ (4)

with the solution

FIG. 2 (color online). (a) Asymmetric dispersion relation (black
filled circles) of the rescaled frequency ωðkÞ≡ ΩðkÞ=Ω0

(Ω0 ≡ c=L, where c is the speed of light and L ¼ LA is the
thickness of the dielectric layers) of the passive magnetic
photonic structure shown in Fig. 1 . Overlaid is the group
velocity dω=dk of the propagating modes (red triangles). The
SIP is indicated with a circle. (b) Motion of exact S-matrix poles
in the complex k-plane as the gain inside the photonic structure
increases from zero. The arrows indicate the direction of
increasing gain. The green circle marks the first lasing threshold.
(c) The response function ΘL;RðωÞ ¼ TL;R þ RL;R vs. ω for a
grating consisting of 20 basic units. Left inset: TL left (black) and
TR right (red) transmittance for a frequency domain where Fabry-
Perot resonances are present. Right inset: TL;R around the SIP
frequency. Notice the high level of asymmetry near the SIP where
TR ≫ TL (more than two order of magnitude).
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E⃗ðr⃗Þ ¼ eiðkxxþkyyÞE⃗ðzÞ; H⃗ðr⃗Þ ¼ eiðkxxþkyyÞH⃗ðzÞ; (5)

where ωðk⃗Þ is the frequency. An “external region” encom-
passing the resonator, extends for jzj > L=2. We assume
that the permittivity and permeability parameters take
constant values ϵ̂ ¼ ϵ0 × 1̂ ; μ̂ ¼ μ0 × 1̂ where 1̂ is the
3 × 3 identity matrix.
Assuming normal propagation, i.e., kx ¼ ky ¼ 0, the

solutions of Eq. (5) for E⃗ðzÞ in the left (l) and right (r) side
of the scattering region, are written in terms of the forward
and backward traveling waves:

E⃗l;r ¼ Al;reikz þ Bl;re−ikz; (6)

where

Al;r ¼ ½Al;r
x Al;r

y �T ; Bl;r ¼ ½Bl;r
x Bl;r

y �T: (7)

The corresponding magnetic field H⃗ðzÞ is H⃗ðzÞ ¼
1
c ẑ × E⃗ðzÞ, where ẑ is the unit vector in the z direction.
The relation between the electric field on the left and

right sides of the scattering region is described by the 4 × 4
transfer matrix M:

�
Ar

Br

�
¼ M

�
Al

Bl

�
; M ¼

�
M11 M12

M21 M22

�
: (8)

The transmission and reflection coefficients can be then
expressed in terms of the transfer matrix elements as

rl ¼ −M−1
22M21; rr ¼ M12M−1

22

tl ¼ M11 −M12M22
−1M21; tr ¼ M−1

22 .
(9)

From Eqs. (9), we construct the scattering matrix S

�
Bl

Ar

�
¼ S

�
Al

Br

�
; S≡

�
rl tr

tl rr

�
; (10)

which, below the laser threshold, connects the outgoing
wave amplitudes to their incoming counterparts. For loss-
less media the permittivity ϵ ¼ ϵ0 þ iϵ00 is strictly real
ϵ00 ¼ 0. Addition of gain in the system results in a complex
permittivity ϵ ¼ ϵ0 þ iϵ00 with ϵ00 < 0. Without loss of
generality we further assume that the gain is introduced
at the dielectric layers with ϕ2 ¼ 0. We have checked that
other periodic arrangements of the gain along the cavity
give the same qualitative results.
Following Refs. [3,12] we analytically continue

the scattering matrix S to the complex-k plane. The
scattering resonances are then defined by the following
(outgoing) boundary conditions, i.e., ðBl;ArÞT ≠ 0 while
ðAl;BrÞT ¼ 0, and are associated with the poles of the S
matrix. It follows from Eqs. (9), (10) that the poles of the S
matrix can be identified with the complex zeros of the
secular equation detðM22Þ ¼ 0.

In a passive structure, where ϵ ¼ ϵ0 is real, the complex
poles of the Smatrix kp ¼ kR − ikI are located in the lower
half part of the complex plane due to causality. The real part
kR ≡ReðkpÞ is associated with the resonant frequencies
while the imaginary part kI ≡ ImðkpÞ describes the fact that
the cavity is open [12].
In Fig. 2(b) we report the motion of the S-matrix poles in

the complex k plane. Introducing gain ϵ00 to the system
leads to an (almost) vertical movement of the poles towards
the real axis. This indicates that the lasing frequency
ReðkpÞ of the system is almost equal to the associated
mode of the passive structure. At the critical value ϵ00Th for
which the first one of the poles [marked with a circle in
Fig. 2(b)] crosses the real axis the system reaches the lasing
threshold. We have further confirmed the lasing action at
ϵ00Th by evaluating in Fig. 2(c) an overall response function,
defined as the total intensity of outgoing (reflected or
transmitted) waves for either a left or right (single-port)
injected wave; that is ΘL;RðωÞ ¼ TL;R þ RL;R, where TL=R
and RL=R are the respective left and right transmittances and
reflectancesaveragedoverpolarization.Foralosslesspassive
medium, one always has ΘðωÞ ¼ 1 due to power conserva-
tion, whereas ΘðωÞ > 1 indicates that an overall amplifica-
tion has been realized. Near the lasing frequencyΘðωÞ takes
large values, diverging as the lasing threshold is attained.
Furthermore, in the insets of Fig. 2(c) we report the left and
right transmittances in the regime of regular FP resonances
(left inset) and at a SIP-related frozen mode (right inset).
While for FP resonances TL and TR exhibit a moderate
asymmetry, for a SIP-related mode the asymmetry between
themincreasesdramatically (TR ≫ TL bymore than2orders
of magnitude) indicating strongly asymmetric transport.
A comparison between Fig. 2(a) and Figs. 2(b),(c)

indicates that the lasing threshold frequency is very close
to ω0 associated with the SIP. While, at this frequency,
a right-moving propagating wave (associated to k1 and
having large group velocity vðk1Þ > 0) releases most of its
energy outside the photonic structure, the mode associated
with k ≈ k0 has extremely small group velocity and allows
for a long residence time of the photons inside the structure.
The interaction of these photons with the gain medium
results in strong amplification, which in turn leads to a
lasing action. Once the lasing threshold is reached, the
outgoing lasing beam is emitted predominantly from the
left side of our structure [opposite side from vðk1Þ > 0],
therefore producing unidirectional lasing.
We have confirmed the asymmetry in overall power

amplification by analyzing the ratio Λ≡TRþRL=TLþRR.
The latter is shown in the right column of Fig. 3.
Specifically, large values of Λ indicate asymmetric power
amplification towards the left while smaller than unity Λ
indicates power amplification towards the right. However
the actual indication of the nonreciprocal nature of our
photonic structure is provided by an analysis of the trans-
mittance asymmetry TA ¼ TR=TL. This asymmetry exists
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only in the case that nonreciprocity and gain are simulta-
neously present.
The magnitude of TA will be strongly affected by the

existence of the SIP. Specifically, we expect that the
unidirectional amplification near the SIP can be enhanced
further by increasing the size of the periodic structure. In
this case, the residence time of photons associated with the
left moving (slow velocity) mode becomes even longer thus
resulting in stronger transmission asymmetries. A scaling
analysis of TA for an increasing number of periods of the
grating (see Fig. 3 right panels) indicates that as the system
becomes larger the asymmetry becomes increasingly
peaked around the unidirectional lasing mode (associated
to the SIP), while other picks (associated to standard FP
resonances) remain unchanged or even subside. We
observe that the unidirectional lasing frequency emerging
from of the SIP mode remains fixed and it is insensitive to
the size of the periodic structure.
Conclusions.—We have introduced a qualitatively new

mechanism for unidirectional lasing action which is inde-
pendent on the dimensionality of the lasing cavity and
relies on the coexistence of a nonreciprocal SIP-related
frozen modes and gain. The transmittance asymmetry of
these modes increases significantly with the size of the
structure. As opposed to a conventional lasing cavity
utilizing asymmetrically placed reflecting mirrors, a non-
reciprocal magnetophotonic structure can produce unidir-
ectionality, even at the first (linear) lasing threshold. This
unique feature is not available in reciprocal active cavities.
Besides, a unidirectional magnetophotonic structure does
not need mirrors or any other reflectors in order to trap light
and reach the lasing threshold.
The nonreciprocal layered structure in Fig. 1 is just a toy

model of a periodic array capable of developing a spectral

SIP. It was rather used here in order to demonstrate the
proof of principle for the MUL. A future challenging
research direction is to propose realistic structures that
allow for the coexistence of gain and nonreciprocal SIP.
While at infrared and optical wavelengths, the gain is not a
problem, the creation of a well-defined nonreciprocal SIP is
not a simple matter and is the subject of a whole new area of
research. In this respect a promising approach that we
intend to explore in the future is to replace the layered
structure in Fig. 1 with an array of two or three coupled
periodic optical waveguides similar to those proposed in
Ref. [13]. Such arrays can support a reciprocal SIP. Our
preliminary consideration shows that adding a gain com-
ponent to the waveguide array and using a magnetic
substrate can produce a nonreciprocal SIP, along with
the necessary conditions for unidirectional lasing. Still,
at this point, practical realization of a MUL remains
challenging.
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