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We investigate transverse symmetry-breaking instabilities emerging from the optomechanical coupling
between light and the translational degrees of freedom of a collisionless, damping-free gas of cold, two-
level atoms. We develop a kinetic theory that can also be mapped on to the case of an electron plasma under
ponderomotive forces. A general criterion for the existence and spatial scale of transverse instabilities is
identified; in particular, we demonstrate that monotonically decreasing velocity distribution functions are
always unstable.
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The spontaneous emergence of ordered states from
homogeneous initial conditions is a preeminent feature of
nonlinear systems driven far from thermodynamic equilib-
rium. Since the pioneering work by Turing [1], it became
clear that a variety of nonlinear physical systems can
spontaneously break spatiotemporal symmetry as the result
of instabilities to infinitesimal perturbations. Typically,
perturbations at a given spatial and/or temporal scale become
unstable when the amount of injected energy exceeds a
threshold value. Such a spontaneous self-organization man-
ifests itself inmanybranches of physics: plasma instabilities,
for instance, play a major role in fusion research [2].
Symmetry-breaking instabilities are ubiquitous in chemis-
try, fluid dynamics, or biology [3]. In optical systems, optical
nonlinearities have been shown to lead to self-organization
in the plane transverse to the light propagation, in a variety of
media and geometrical configurations [4–8].
In recent years, self-organizing instabilities due to the

optomechanical coupling of light and cold [9–14] and
ultracold [15,16] atoms have attracted remarkable interest.
In many of these schemes, a pump beam is scattered by the
gas into an externally imposed mode (often selected by a
cavity). The interference between this mode and the pump
then provides a modulated light pattern, which via dipole
forces leads to a spatial rearrangement of atoms. The
emerging density gratings resulting from the interference
of this mode and the pump then provide positive feedback
by scattering photons into the self-sustained mode. In these
arrangements, the spatial scale of the emerging structure
is predetermined by the light wavelength and the geomet-
rical configuration. Multimode cavity setups displaying
continuous symmetry breaking and spin-glass behavior
in ultracold gases also attracted remarkable interest [17].
Alternative and naturally multimode schemes are possible
in cold atoms, where spatial organization emerges in the
plane transverse to the propagation of a single beam, with
self-selected scales. It is in fact expected that atomic
transport due to dipole forces can lead to nonlinear effects
in cold atoms analogous to the Kerr effect in the hot-atoms

case [18,19]. Self-organization in a counterpropagating
geometry was first analyzed in Ref. [20], and some
experimental evidence for its existence was found in
Ref. [21]. In Ref. [22] it was shown that optomechanical
forces in a ring cavity configuration can lead to an
instability even in the absence of any optical (Kerr) non-
linearity, thus providing a new pattern-forming mechanism
on their own. The study of transverse optomechanical
instabilities in cold atoms has been so far limited to the
case where strong velocity damping is provided by optical
molasses [20,22]. Recent experiments in cold Rb have,
however, shown spontaneous symmetry breaking due to
optomechanical coupling, but in the absence of such
damping [23]. The need of a satisfactory understanding
of these results has thus been a strong motivation to the
theoretical study of the damping-free case by extending
the analysis of Refs. [20] and [22]. We remark that while
stationary density patterns are observed in the presence
of damping [22], complex spatiotemporal dynamics are
expected in the damping-free case. Although the velocity
distribution will change during the instability in contrast to
the case in Refs. [20,22], the threshold is determined only
by the initial kinetic temperature of the gas.
Nonlinear effects of conceptually similar origin have also

been demonstrated in plasmas, such as self-focusing and
filamentation [24–26]. Here, the nonlinearity originates
from ponderomotive forces acting on the plasma and
pushing the electrons away from high-intensity regions.
In the presence of feedback, this is expected to lead to a
coupled light-density transverse self-organization, whose
theoretical or experimental evidence is to our knowledge still
lacking in the context of plasma physics.We also emphasize
that the connection between plasmas and cold atoms can
be extended beyond the correspondence between dipole
and ponderomotive forces. In fact, attractive (shadow) and
repulsive (radiation pressure) forces exist inside magneto-
optically trapped samples, which introduce an effective
charge between the atoms and, thus, simulate electrostatic
interaction [27–30]. In addition to the fundamental interest
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in cold-atom instabilities, therefore, cold and ultracold
atomic samples can also provide a powerful and highly
controllable tool for the study of various plasma systems
including quantum plasmas.
We consider a thermal gas of two-level atoms described

by the distribution function fðx; v; tÞ. In what follows, x
and v denote the positions and velocities in the plane
transverse to the propagation of light; see Fig. 1. The gas is
initially prepared at temperature T and interacts with an
optical beam at frequency ω0, tuned far from any atomic
transition. Because of this large detuning assumption,
heating effects are negligible. At the low temperatures
obtainable by laser cooling (T ∼ 100 μK), collisions are
also negligible and the dynamics is governed by the
collisionless Boltzmann equation

∂f
∂t þ v ·

∂f
∂xþ F

M
·
∂f
∂v ¼ 0; (1)

where M is the atomic mass and F the force acting on
the gas. In cold atoms, this is given by the dipole force
F ¼ − 1

2
ℏδ∇x log½1þ sðxÞ�, where δ ¼ ω0 − ωat is the

atom-light detuning and sðxÞ ¼ IðxÞ½Isatð1þ 4δ2=Γ2Þ�−1
the saturation parameter associated with the total intensity
IðxÞ illuminating the gas. Scattering forces are neglected by
assuming the detuning to be much larger than the atomic
linewidth jδj ≫ Γ.
The plasma case is retrieved by identifying f as the

electron distribution, M ¼ me as the electron mass, and
Fpm ¼ −½e2=ð2ε0cmeω

2
0Þ�∇xIðxÞ as the ponderomotive

force, with e the electron charge, ε0 the vacuum permit-
tivity, and c the speed of light in vacuum.
To analyze the stability of the perturbations, we Fourier

transform our quantities in space and Laplace transform in
time.This leads to theusual relations∂x → iqand∂t → −iω,
with growing perturbations identified by ImðωÞ > 0.
Linearization of Eq. (1) then leads to

ð−iωþ iq · vÞf1 ¼ i
ℏδ
2M

s1ðq;ωÞ
1þ sh

q ·
∂f0
∂v þ f1ð0Þ; (2)

where f1ð0Þ denotes the initial disturbance, andwe took into
account the fact that the force is a first-order quantity
involving spatial gradients. Scaling is such that s0 ¼ jgFj2
represents the saturation parameter associated to the forward
field, and sh ¼ ð1þ RÞs0 is the homogeneous solution
(R being the mirror transmittivity, see Fig. 1). Since we are
interested in transverse effects only, we average over the
longitudinal degrees of freedom and take the total intensity
as s ¼ s0 þ jgBj2. The Laplace transform ensures that cau-
sality is preserved by correctly viewing Eq. (1) as an initial
value problem.
To obtain s1ðq;ωÞ we first calculate the forward field gF

at the exit of the medium. In the limit of small saturation
parameters and large detuning, we can neglect absorption
and approximate the atoms as linear (Rayleigh) scatterers.
The forward field will, thus, be phase shifted as
gF → gF expfiχ0nðx; tÞg, where χ0 is the linear phase
shift imposed by the cloud and n the spatial density of
the gas, obtained by integrating fðx; v; tÞ over the entire
velocity space. For a sample of two-level atoms with optical
density b0, one has χ0 ¼ b0δ½Γð1þ 4δ2=Γ2Þ�−1. Similarly,
a plasma acts as a purely dispersive medium with a density-
dependent susceptibility [2]. In what follows, definitions
are chosen so that the uniform density solution is nh ¼ 1.
We then propagate the field to the mirror (distance d)
and back to obtain the backward field gB. If the backward
field is perturbed as gB ¼ gð0ÞB ð1þ b1ðx; tÞÞ, the intensity
perturbation s1ðq;ωÞ ¼ Rs0ðb1ðq;ωÞ þ c:c:Þ will depend
on the gas distribution as

s1ðq;ωÞ ¼ −2Rs0χ0 sin Θq

Z
dvf1ðq; v;ωÞ; (3)

where Θq ¼ ðd=k0Þq2 is the diffractive phase shift, with k0
the light wave number and q ¼ jqj the transverse wave
number. The key point of the single mirror feedback scheme
is the conversion of phase perturbations into amplitude
perturbations operated by the free-space propagation [5].
In fact, as phase fluctuations are converted into amplitude
perturbations for the backward field, dipole forces are
induced into Eq. (1). These in turn affect n through the
optomechanical coupling and consequently feed back to the
backward field amplitude profile. If positive feedback can
be obtained for a disturbance at some wave vector q, an
instability at that wave vector is expected.
To progress in the stability analysis, we now seek a

closed expression for s1. Obtaining f1 from Eq. (2) and
using this result into Eq. (3) we reach the following
expression for the intensity perturbation:

FIG. 1 (color online). Sketch of the single mirror feedback
scheme. A plane wave of intensity s0 interacts with a sample of
two-level, cold atoms. The gas (or plasma) imposes a phase shift
χ0nðx; tÞ on the field, where n is the atomic density. Transverse
fluctuations in the phase profile of the forward field gF (dashed
line) are converted into amplitude modulations for the backward
field gB (full line) by the free-space propagation to the mirror
(reflectivity R, distance d) and back.
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s1ðq;ωÞ ¼ −2Rs0χ0 sin Θq

Z
dv

f1ð0Þ
iq · v − iω

×

�
1þ Kq

Z
dv

êq · ∂f0=∂v
êq · v − ω=q

�−1
;

where êq is the unit vector oriented as q and we defined

Kq ¼
ℏδ
M

Rs0
1þ ð1þ RÞs0

χ0 sin Θq:

The behavior of s1ðx; tÞ and, thus, the dynamics of the
system is fully determined by the inverse Fourier and
Laplace transforms of s1ðq;ωÞ. Under regularity assump-
tions for f1ð0Þ and ∂f0=∂v, the integrands above have
no singularities and the only contributions to the inverse
Laplace transforms are given by the zeros of a “dielectric
function,”

Dðq;ωÞ ¼ 1þ Kq

Z
dv

êq · ∂f0=∂v
êq · v − ω=q

¼ 0: (4)

A formally identical result is obtained for the case of an
electron plasma under the action of ponderomotive forces.
The plasma case is retrieved by substituting Kq with
KPL

q ¼ ½e2=ðε0cm2
eω

2
0Þ�RI0χ0 sin Θq, with I0 the nonres-

caled incident intensity (in Wm−2).
A first general result can be found from Eq. (4) by

expanding ω ¼ ωr þ iωi. Requiring both real and imagi-
nary parts of Dðq;ωÞ to be zero leads to the condition

1þ Kq

Z
dv

ðêq · ∂f0=∂vÞðêq · vÞ
ðêq · v − ωr=qÞ2 þ ðωi=qÞ2

¼ 0: (5)

For any monotonically decreasing function f0ðjvjÞ, such
as a Maxwellian, we find that an instability is in principle
always possible since ðêq · ∂f0=∂vÞðêq · vÞ < 0. Such
monotonicity is, thus, a sufficient criterion for the occur-
rence of an instability, though it is not necessary: also
nonmonotonic distributions may in fact satisfy the con-
dition of Eq. (5). Equation (5) also imposes a general
restriction on the possible unstable wave numbers in the
single mirror arrangement. Since in two-level atoms
χ0 ∝ δ−1 we have that δχ0 > 0 always, and an instability
is found only in the regions where sin Θq > 0. Similar
considerations apply to the plasma case, where no red-
detuning analog exists. One could see the optomechanical
mechanism as responsible for a Kerr-like, self-focusing
nonlinearity independent of the sign of the detuning. This
was already recognized by Ashkin in early studies on
dielectric particles [31] and remains true in the damped case
of Ref. [22]. However, an important difference with soft-
matter studies is that no velocity damping is present in our
system. We remark that the result (5) is a general property
of the optomechanical mechanism investigated here and
can be generalized to different geometries (e.g., a ring

cavity). Equation (5) should be contrasted to the Newcomb-
Gardner theorem in plasma physics [32], stating that
plasma (Langmuir) waves are always stable if the initial
velocity distribution is monotonically decreasing. For
the case analyzed here of transverse perturbations and
feedback, instead, we demonstrate an instability for mono-
tonically decreasing f0. We note that Eq. (5) identifies an
instability for both dipole forces in cold atoms
and ponderomotive forces in plasmas.
Let us go back to Eq. (4) and for simplicity focus our

attention to one transverse dimension. If f0ðjvjÞ is taken as
the Maxwellian f0 ¼ ð2πv2thÞ−1=2 expð− 1

2
v2=v2thÞ, where

v2th ¼ kBT=M, there is no analytic solution to the dispersion
integral in Eq. (4). However, if we restrict ourselves to the
threshold condition ω ¼ 0, the dispersion integral simply
reduces to the normalization condition for f0 and we obtain
a threshold condition for the injected saturation parameter

s0 ¼ sth ≡
�
ℏδ
kBT

Rχ0 sin Θq − ð1þ RÞ
�−1

: (6)

The most unstable wave number (with minimum threshold)
is given by the condition sin Θq ¼ 1, and a threshold is
found also for the phase shift: χ0 > ðℏδ=kBTÞ−1ð1þ RÞ=R.
Equation (6) thus shows that an instability is possible for a
Maxwellian gas and provides the threshold condition.
However, Eq. (6) still leaves us without any information
on the time scale of the process. Such information requires
the calculation of the growth rate although, as stated earlier,
no analytic solution is possible for the dispersion integral
in Eq. (4). The dispersion integral can be analytically
solved for the case of a Lorentzian velocity distribution
f0 ¼ π−1vth=½v2 þ v2th�: for this case thegrowth rate is purely
imaginary, ω ¼ iωi, and given by ωi ¼ jqjf−vth þ ffiffiffiffiffiffi

Kq
p g.

Since we do not expect the particular form of the distribution
to be relevant in determining the qualitative features of the
process, we numerically solve the Maxwellian dispersion
relation Dðq; iωiÞ ¼ 0 for a given q and look for an
equivalent expression of the growth rate. We choose here
to investigate the critical wave number qc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πk0=2d

p
(which satisfies sin Θqc ¼ 1). Figure 2 shows the growth

FIG. 2 (color online). Linear growth rate at the critical wave
number qc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πk0=2d

p
. Dots are numerical evaluations of the

dispersion relation (4) for the Maxwell distribution, and the red
line is the expression of Eq. (7). Parameters are δ ¼ 30Γ, χ0 ¼ 1,
R ¼ 1, d ¼ 5 mm, and T ¼ 300 μK.
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rateωi for the Maxwellian case for δ ¼ 30Γ, χ0 ¼ 1, R ¼ 1,
d ¼ 5 mm, andT ¼ 300 μK.Taking theD2 line of 87Rb as a
reference, we use Γ−1 ¼ 26 ns and M ¼ 1.44 × 10−25 kg.
A phase shift χ0 ¼ 1 can be obtained by using a cloud with
an in-resonance optical density of 120. We find that the
growth rate is well described by

ωi ¼
ffiffiffi
2

p
qcf−vth þ

ffiffiffiffiffiffiffi
Kqc

p g; (7)

which is identical, numerical prefactors aside, to the
Lorentzian result. This result is easily extended to the plasma
case by substituting Kq with KPL

q [see the discussion after
Eq. (4)].We remark that the threshold (6) is formally identical
to the one found in the presence of optical molasses, i.e., by
adapting the model of Ref. [22] to the single mirror feedback
geometry, but the growth rate (7) is different.
Figure 3 shows the distribution function fðx; vÞ obtained

from numerical simulations of Eq. (1), for a final time of
3 ms and a transverse domain size of five critical wave-
lengths Λc ¼ 2π=qc. We drive the system with a pump
beam of intensity s0 ¼ 0.05 (roughly 1.37 times the
threshold) and observe the spontaneous emergence of a
periodic optical potential, trapping a large fraction of the
atoms in the intensity minima (maxima) for blue (red)
detuning, respectively. We also show in Fig. 3 the intensity

profiles sðxÞ and the density distributions nðxÞ obtained
on the blue and red sides of the resonance. The spatial scale
of these structures is given by Λc ≃ 125 μm with our
choice of parameters, which is close to experimental
observations [23].
We remark that the result of Eq. (7) holds also for a

different choice of the wave vector q and that the growth
rate depends only on the modulus jqj. The driving termffiffiffiffiffiffi
Kq

p jqj directly depends from the intensity s0 as well as
the optical thickness of the medium and the light-atom
detuning. On the other hand, a dephasing term −vthjqj
originates from thermal motion. The balance of these two
effects (ωi ¼ 0) leads to the threshold of Eq. (6). Finally,
we note that the expression of Eq. (6) implies that the
instability threshold approaches zero as T → 0 or, equiv-
alently, as f0ðvÞ → δðvÞ in our kinetic theory, which is a
familiar result in the context of cold plasma instabilities.
This is an important result since it gives considerable
experimental flexibility in terms of achievable temperature
and optical thickness. However, we note that on decreasing
the temperature below the Bose-Einstein condensation
point the phenomenology is expected to change consid-
erably. The study of transverse instabilities in a degenerate
Bose-Einstein condensate is beyond the scope of this Letter
and will be analyzed in future studies.
In conclusion, we have theoretically investigated opto-

mechanical transverse instabilities in a single mirror
feedback configuration. Similar results are expected for
other configurations, such as counterpropagating beams
and ring cavities. In contrast to previous studies in cold
gases, no velocity damping is assumed in the system. Our
kinetic theory for such a damping-free case is formally
extendible to the case of a single-specie plasma, with the
dispersion relation depending on the initial velocity
distribution of the gas. We demonstrated that for mono-
tonically decreasing velocity distributions of the gas a
transverse instability due to optomechanical coupling is in
principle always expected. For the case of a Maxwellian
gas, we identified the threshold condition for such an
instability, together with an expression for the growth rate
that agrees well with a numerical evaluation of the
dispersion relation. A threshold appears when the driving
effect due to the pump and the dephasing effect due to
thermal motion balance each other. The theory developed
here does not take into account absorption or nonlinear
dispersion originating from the internal structure of the
atoms so that the instability is entirely due to optome-
chanical coupling. The inclusion of such optical effects
will be presented elsewhere, but we stress that they are not
of principal importance in the large detuning limit. Future
work could also extend the connection with plasma
physics by including electrostaticlike effects [27–30] or
investigate transverse instabilities in ultracold atomic
gases and quantum plasmas.

FIG. 3 (color online). Results from numerical simulations, for
the same parameters as in Fig. 2, injected intensity s0 ¼ 0.05
(≃1.37 times the threshold), and detuning δ ¼ 30Γ (a) and
δ ¼ −30Γ (b). The left column shows the phase space distribu-
tions fðx; vÞ displaying atomic bunching in correspondence with
the highly saturated regions (around the center of the ellipses).
The right column show that for blue (red) detuning, the maxima
of the atomic density nðxÞ align with the minima (maxima) of the
optical intensity profile. The final simulation time is 3 ms.
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