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We determine the magnetization of quantum chromodynamics for several temperatures around and
above the transition between the hadronic and the quark-gluon phases of strongly interacting matter. We
obtain a paramagnetic response that increases in strength with the temperature. We argue that due to this
paramagnetism, chunks of quark-gluon plasma produced in noncentral heavy ion collisions should become
squeezed perpendicular to the magnetic field. This anisotropy will then contribute to the elliptic flow v2
observed in such collisions, in addition to the pressure gradient that is usually taken into account.
We present a simple estimate for the magnitude of this new effect and a rough comparison to the effect due
to the initial collision geometry. We conclude that the paramagnetic effect might have a significant impact
on the value of v2.
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Introduction.—In heavy-ion collisions (HICs) strongly
interacting matter is exposed to extreme conditions to
probe the QCD phase diagram and to reveal properties
of the quark-gluon plasma (QGP). It is, however, not
straightforward to relate characteristics of the so produced
QCD medium to experimental signatures. One of the most
prominent experimental observables is the elliptic flow v2
[1], which marks the onset of hydrodynamic behavior at
very early times (hydroization). Connecting v2 to the
centrality of HICs in a model-independent way is crucial
to extract the ratio of viscosity to entropy density η=s of the
QGP [2].
Another important aspect of the initial phase of HICs is

the generation of extremely strong magnetic fields [3–6].
We show that these magnetic fields may have an impact
on v2 and, therefore, should be taken into account in a
quantitative analysis of the elliptic flow. Irrespective of this
observable effect, the response to magnetic fields is a
fundamental property of QCD matter which deserves to be
studied in its own right. Other applications of our findings
include models of neutron stars (magnetars [7]) and
primordial magnetic fields in the early Universe (see,
e.g., Ref. [8]).
All information about the response of QCD to magnetic

fields can be deduced from the free energy density
f ¼ −T=V log Z, given in terms of the partition function
Z. Applying a constant external magnetic field B induces
a nonzero magnetization

M ¼ − ∂f
∂ðeBÞ ; (1)

which we normalized by the elementary charge (e > 0).
The sign of M determines whether the QCD vacuum as a
medium exhibits a paramagnetic response (M > 0) or a

diamagnetic one (M < 0) [9]. In the former case the
magnetization is aligned parallel to the external field, while
in the latter case it is antiparallel. One clue about the sign
of M came from a low-energy effective model of QCD—
the hadron resonance gas (HRG) model—which predicted
the magnetization to be positive and thus the QCD vacuum
to be a paramagnet [10]. Several methods were since
developed to study the problem on the lattice [11–14].
All of the results agree qualitatively, confirming the finding
of the HRG model that the QCD vacuum is paramagnetic.
In the present Letter we extend the lattice measurements

of Ref. [11] to cover several temperatures in and above the
transition region. We do not yet provide final, continuum
extrapolated values for the magnetization, but instead aim
at a first estimate of the effect of QCD paramagnetism on
the phenomenology of heavy ion collisions. To this end, let
us consider a chunk of the QGP exposed to a nonuniform
magnetic field. Owing to the positivity of M, the free
energy is minimized when the medium is located in regions
where B is maximal. The minimization of f thus results in a
net force, which strives to change the shape of the medium.
For a noncentral HIC (with ẑ being the direction of the
collision axis, x̂-ẑ the reaction plane, and ŷ the direction
of the magnetic field induced by the beams), this force
will compress QCD matter in the transverse plane, with a
stronger squeezing in the x direction; see Fig. 1. This
distortion can affect the azimuthal structure of the expan-
sion of the system, in addition to the pressure gradients due
to the initial geometry. We call this effect paramagnetic
squeezing.
The interplay of the geometric pressure gradient and the

paramagnetic squeezing crucially depends both on the time
and space dependence of the magnetic field [15,16] and on
the moment of the onset of early hydroization [17]. Both
time scales are subjects of ongoing debate. We also remark

PRL 112, 042301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

0031-9007=14=112(4)=042301(5) 042301-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.042301
http://dx.doi.org/10.1103/PhysRevLett.112.042301
http://dx.doi.org/10.1103/PhysRevLett.112.042301
http://dx.doi.org/10.1103/PhysRevLett.112.042301


that our quantitative results apply, strictly speaking, to
QCD matter in thermal equilibrium only. Therefore, at
present, the best we can do is to estimate whether the
impact of the sketched squeezing effect is sizeable.
According to our numerical results, which we detail below,
this can be the case for RHIC and, in particular, for LHC
collisions. This clearly calls for a quantitative analysis of
the dynamics of the decay of the initial magnetic field and
of the onset of hydroization.
We mention that the paramagnetic squeezing may

correlate the recently observed large event-by-event fluc-
tuations in v2 [18] with fluctuations of the magnetic field.
Furthermore, we note that a similar squeezing effect may
operate in the inner core of magnetars if the magnetic field
there reaches typical QCD scales (B ∼ 1014–15 T).

Lattice setup.—We consider a hypercubic lattice of size
N3

s × Nt and spacing a. The discretization of the QCD
action we choose is the tree-level Symanzik improved
gluonic action and stout smeared staggered quarks for the
three lightest flavors (the detailed simulation setup is
described in Refs. [19,20]). The quark masses are set to
their physical values along the line of constant physics (for
details, see Ref. [21]), mu ¼ md ¼ ms=28.15. The electric
charges of the quarks are qu=2 ¼ −qd ¼ −qs ¼ e=3. The
flux Φ of the magnetic field on the lattice is quantized,

Φ≡ ðNsaÞ2eB ¼ 6πNb; Nb ∈ Z; 0 ≤ Nb < N2
s ;

(2)

which prohibits the direct evaluation of the magnetization,
Eq. (1), as a derivative with respect to B. The first approach
to circumvent this problem was developed in Ref. [11],
where we calculatedM as the difference of lattice pressures
parallel and perpendicular to B. Several alternatives were
also introduced recently to determine the magnetization.
In Refs. [12], the derivative of f with respect to B is
constructed (giving an unphysical quantity due to flux
quantization) and then integrated to obtain the physical

change of the free energy due to B. Reference [13] evades
flux quantization altogether by considering a magnetic
field which is positive in one and negative in the other half
of the lattice. Finally, in Ref. [14] we developed an integral
method which is based on the B independence of f at
asymptotically large quark masses.
Here we follow the approach of Ref. [11]. The main

idea is the following: Flux quantization implies that a
hypothetical compression of the system in the direction
perpendicular to B can only proceed keeping Φ fixed—
which automatically implies changing B. Therefore, one
has to compress the magnetic field lines together with
the system. In Ref. [11] we have shown that this gives a
consistency relation between the response of the system to
a change in B; i.e., the magnetization, and the response to a
change in the size of the system in different directions, i.e.,
the pressures. This leads to the relation

−MeB ¼ −ðζg þ ζ̂gÞ½AðBÞ − AðEÞ� − ζf
X

f

AðCfÞ; (3)

where AðBÞ, AðEÞ are the anisotropies in the chromomag-
netic and chromoelectric parts of the gluonic action, AðCfÞ
is the anisotropy in the fermionic action for the quark flavor
f (f ¼ u, d, s), and ζg, ζ̂g, and ζf are renormalization
coefficients that may be determined, e.g., by simulating on
anisotropic lattices. To leading order in perturbation theory,
ζg ¼ ζ̂g ¼ ζf ¼ 1. We found the gluonic anisotropies to be
by factors of 5–10 smaller than the fermionic anisotropy.
This means that the magnetization is well approximated by
MeB ≈

P
fAðCfÞ, within a systematic error of 10%–20%.

The fermionic anisotropy in terms of the parallel and
perpendicular components of the Dirac operator reads

AðCfÞ ¼
1

2
½Ψ̄fDxΨf þ Ψ̄fDyΨf� − Ψ̄fDzΨf; (4)

where Dμ is the component of the Dirac operator propor-
tional to γμ, which is readily accessible on the lattice.

Renormalization.—The free energy in the presence of an
external magnetic field contains a B-dependent logarithmic
divergence. This divergence stems from the coupling of
quarks to B through their electric charges and is cancelled
by the renormalization of the electric charge [22]. The fact
that the prefactor of the divergence in question is given by
the lowest-order QED β-function coefficient β1 (this con-
tains perturbative and nonperturbative QCD corrections)
further illustrates the fundamental relation between the
B-dependent divergence of f and electric charge renorm-
alization. At zero temperature, this divergence constitutes
the only term which is of OððeBÞ2Þ:

fðBÞ − fð0Þ ¼ −β1ðeBÞ2 logðaÞ þOððeBÞ4Þ: (5)

The magnetization inherits this divergence and—again,
at zero temperature—has the structure

FIG. 1 (color online). Typical magnetic field profile in the
transverse plane of a noncentral heavy-ion collision (darker
colors represent stronger fields). The paramagnetic squeezing
exerts the force indicated by the red arrows. As a result, the QGP
is squeezed in the x direction.
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MeB ¼ 2β1ðeBÞ2 logðaÞ þOððeBÞ4Þ: (6)

The renormalization of M, therefore, amounts to sub-
tracting the total OððeBÞ2Þ term at zero temperature
(for a more detailed explanation of this point see, e.g.,
Refs. [10,23]). This term can be determined by considering
the limit of small magnetic fields. This results in the
renormalization prescription

fr ¼ ð1 − PÞ½f�; MreB ¼ ð1 − PÞ½MeB�; (7)

where P is the operator that projects out theOððeBÞ2Þ term
from an observable X:

P½X� ¼ ðeBÞ2 lim
eB→0

X
ðeBÞ2 : (8)

In Fig. 2 we show the coefficient of the divergent
term P½MeB�=2ðeBÞ2 for several lattice spacings at
T ¼ 0. In accordance with Eq. (6), the divergent term is
found to be proportional to logðaÞ, with a coefficient of
0.016(4). The leading order perturbative scaling is given
by the lowest order coefficient of the QED β function for
three quark flavors with Nc ¼ 3 colors, βQED1 ¼ Nc=ð12π2ÞP

f¼u;d;sðqf=eÞ2 ≈ 0.0169: the fitted slope is consistent
with the perturbative prediction, within statistical errors.
Increasing the statistics would be necessary to resolve QCD
corrections to β1.

Results and discussion.—We can now subtract the diver-
gent part ofM measured at T ¼ 0 to obtain the temperature
dependence of the renormalized magnetization Mr, as
defined in Eq. (7). The result is shown in Fig. 3, where
Mr is plotted for eB < 1.0 GeV2 at three values of the
temperature. The results for all three lattice spacings fall
essentially on top of each other, indicating small lattice
artifacts. (Note that the renormalization at T ¼ 300 MeV,
where the lattice spacing is the smallest, requires an
extrapolation of the T ¼ 0 contribution of Fig. 2.

The systematic error due to this extrapolation is taken into
account here.)
We find Mr > 0 for all temperatures, which demon-

strates the paramagnetic nature of the thermal QCD
vacuum. This is in agreement with our earlier results at
T ¼ 0 [11]. Note that the expansion of Mr in the magnetic
field at T ¼ 0 starts as ðeBÞ3. As the temperature increases,
thermal contributions induce an additional linear term in
Mr, as is visible in the plots (shown by the dashed lines).
This behavior is also present in the HRG model prediction,
which we include in the figure for the lowest temperature,
where the hadronic description is expected to be still valid.
We find the HRG model to reproduce the lattice data for
small fields eB≲ 0.3 GeV2.
The results are well described by a cubic function

Mr ¼ χ1eBþ χ3ðeBÞ3=T4, shown by the dotted lines in
Fig. 3. The linear coefficient is the magnetic susceptibility,
marking the leading response of QCD to the external field.
It is zero at low temperatures and increases drastically
above the transition. On the other hand, the cubic term is
found to decay strongly with temperature, consistent with
T−4 as expected on dimensional grounds. The fit param-
eters are listed in Table I. We remark that for high
temperatures we expect χ1 to show a logarithmic rise with
T; the Stefan-Boltzmann limit of χ1 for free massive quarks
is 2βQED1 logðT=mÞ [24]. (Note that such an entanglement
between ultraviolet and infrared divergences for nonzero
magnetic fields is well known; see, e.g., Ref. [25].) The
high-temperature limit of the next coefficient is χ3 ¼
31Ncζð5Þ=ð960π6Þ

P
f¼u;d;sðqf=eÞ4 ≈ 2.32 × 10−5, with a

negative m2=T2 correction [26]. The lattice data indeed
approaches this limit from below.
We are now in the position to discuss the implications of

our results on HIC phenomenology. For a nonuniform
magnetic field, the paramagnetic squeezing is manifested
by a force density Fps, which arises as the system strives to
minimize its free energy,

Fps ¼ −∇fr ¼ − ∂fr
∂ðeBÞ · ∇ðeBÞ ¼ Mr ·∇jeBj: (9)

Note that the free energy density—being a Lorentz scalar—
is only sensitive to the magnitude of the field, which
allowed us to replace eB by jeBj above. Motivated by
model descriptions of the magnetic field profile [5,6], we
consider a simple two-dimensional Gaussian distribution
of the magnetic field (with widths σx ¼ σy for a central
collision and σx ¼ σy=2 for a peripheral collision). The
so obtained force profiles are depicted in Fig. 4. While
isotropic for central collisions, this inward-pointing force
becomes anisotropic for the peripheral case, squeezing the
medium distribution.
At high temperatures, the magnetization is linear in eB

(see the right panel of Fig. 3), and the gradient also contains
a factor of eB, making Fps proportional to the square of the

FIG. 2 (color online). The divergent OððeBÞ2Þ contribution to
the magnetization normalized by 2ðeBÞ2, as a function of the
logarithm of the lattice spacing (in units of a0 ¼ 1.47 GeV−1, our
coarsest lattice). A linear fit with two free parameters (green solid
line) and one with the slope fixed to the leading perturbative
prediction βQED1 (see text) is also shown (dashed blue line).
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magnetic field. Accordingly, the effect is very sensitive to
the spatial profile of the magnetic field generated in the
collision. Furthermore, this profile depends strongly on the
time elapsed since the moment of the collision [15], giving
rise to a complex behavior of the squeezing effect as a
function of space and time.
We now make a first attempt to estimate the strength of

the paramagnetic squeezing effect based on very simplistic
assumptions, and quantify it in terms of the difference
between the magnitudes of the force densities acting at
(σx, 0) and at (0, σy). This is equivalent to a differenceΔp0

ps
of pressure gradients. From our results for the magnetiza-
tion at T ¼ 300 MeV and the magnetic field profiles of
Refs. [5,6] with σx ¼ σy=2 ¼ 1.3 fm, we obtain jΔp0

psj ≈
0.007 GeV=fm4 for magnetic fields of the order of
5m2

π (the typical value obtained in model calculations
for RHIC energies [5,6,27]). Using the magnetic field
50m2

π corresponding to LHC energies [6] amounts to
jΔp0

psj ≈ 0.7 GeV=fm4. Similar estimates for the early-
time pressure gradients pg resulting from the geometric
effect give differences of jΔp0

gj ≈ 0.1 GeV=fm4 for RHIC
and jΔp0

gj ≈ 1 GeV=fm4 for LHC energies [28]; see also
Refs. [29]. The estimates for the paramagnetic squeezing
are subject to large systematic errors originating, for
example, from the uncertainty of the QGP electric con-
ductivity [15,16]. Moreover, due to the complex space
and time dependence of both mechanisms, a comparison
based only on the magnitude of Fps at two spatial points is
clearly too simplistic. Instead, one should consider a model

for the early stage (t≲ 1 fm=c) of the collision, and
take the paramagnetic squeezing effect into account
from the beginning. This is outside the scope of the present
letter.
To summarize, we have studied the magnetic response

of the quark-gluon plasma by means of lattice simulations
at physical quark masses. The response is paramagnetic
and the magnetization at different temperatures is plotted
in Fig. 3 and parameterized in Table I. Based on these
equilibrium results we estimated the paramagnetic squeez-
ing effect on chunks of quark-gluon plasma produced in
heavy ion collisions. We compared its magnitude to
pressure gradients arising from geometrical effects. The
energy dependence of the two mechanisms is quite differ-
ent. For typical HICs at RHIC we found the paramagnetic
squeezing to give a 10% correction to the geometric effect,
while for LHC collisions they are similar in size. Our
estimates should be improved by more involved model
calculations of the elliptic flow, taking into account the
paramagnetic squeezing in the evolution of the fireball. As
both the onset of hydroization and the magnetic field
dynamics are still the subject of debates, this calls for a
dedicated large scale effort.

TABLE I. Temperature dependence of the coefficients χ1 and
χ3. To obtain the (linear) magnetic susceptibility in SI units, one
needs to multiply χ1 by e2 ≈ 4π=137.

T (MeV) 113 130 142 176 300

χ1 × 102 0.2(5) 0.4(7) 1.1(6) 1.6(5) 3.9(6)
χ3 × 106 9(5) 8(3) 6(3) 9(5) 7(5)

x

y

x

y

FIG. 4 (color online). Paramagnetic force profiles for typical
central (left panel) and peripheral (right panel) heavy-ion
collisions. The circles represent the colliding nuclei.

FIG. 3 (color online). Renormalized magnetization of QCD as a function of the magnetic field for various values of temperature.
Different colors encode different lattice spacings: Nt ¼ 6 (red triangles), Nt ¼ 8 (green squares), and Nt ¼ 10 (blue circles). The
continuum limit corresponds to Nt → ∞. Below Tc we show the HRG model prediction [10] (solid orange line). The dashed lines
represent the linear terms inMr, which were determined by fitting the magnetization at small magnetic fields, whereas the dotted curves
show the results of cubic fits.
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