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We present the first measurements of the ratios of cross sections o(pp — Z + cjet)/o(pp — Z + jet)
and o(pp — Z + cjet)/o(pp — Z + bjet) for the associated production of a Z boson with at least one

charm or bottom quark jet. Jets have transverse momentum pr

jet

> 20 GeV and pseudorapidity

| 77 | < 2.5. These cross section ratios are measured differentially as a function of jet and Z boson
transverse momenta, based on 9.7 fb~! of pp collisions collected with the DO detector at the Fermilab
Tevatron Collider at /s = 1.96 TeV. The measurements show significant deviations from perturbative
QCD calculations and predictions from various event generators.

DOI: 10.1103/PhysRevLett.112.042001

Studies of Z boson production in association with heavy
flavor (HF) jets originating from b or ¢ quarks provide
important tests of perturbative quantum chromodynamics
(pQCD) calculations [1]. A good theoretical description of
these processes is essential since they form a major back-
ground for a variety of physics processes, including
standard model Higgs boson production in association
with a Z boson, ZH(H — bb) [2]. Furthermore, the relative
contributions of the different flavors to the background is
important since Z + ¢ jet events can be misidentified as
Z + b jet events, or vice versa, and, therefore, introduce
additional uncertainties into measurements.

The ratio of Z + b jet to inclusive Z + jet production
cross sections for events with one or more jets has
previously been measured by the CDF [3,4] and DO
[5,6] Collaborations. This Letter reports the first measure-
ment of associated charm jet production with a Z boson.
We present the measurement of the ratio of cross sections
for Z + c jet to Z + jet production as well as Z + ¢ jet to
Z + b jet production in events with at least one jet. The
current analysis is based on the complete Run II data
sample collected using the DO detector [7] at Fermilab’s
Tevatron pp Collider with a center-of-mass energy of
1.96 TeV, and corresponds to an integrated luminosity of
9.7 fb~! following the application of relevant data quality
requirements. The measurement of the ratio of cross
sections benefits from the cancellation of several systematic
uncertainties and, therefore, allows for a more precise
comparison of data with theoretical predictions. These
ratio measurements are also presented differentially as a
function of the transverse momenta of the jet (pJTet) and Z
boson (p%).

PACS numbers: 12.38.Qk, 13.85.Qk, 14.65.Dw, 14.70.Hp

We use the same triggering, selections, object
reconstruction, and event modeling as described in the
recent DO measurement of Z 4+ b jet production [6], but
with a dedicated strategy for the extraction of the
c-jet fraction. Events must contain a Z — £ candidate
with a dilepton invariant mass in the range
70 < My < 110 GeV(Z = e, ).

Dielectron (ee) events are required to have two electrons,
with no requirement on the sign of their electric charge, with
transverse momentum pr > 15 GeV identified through
electromagnetic showers in the calorimeter. One electron
must be identified within a pseudorapidity [8] region
In| < 1.1, while the second electron can be reconstructed
in the region || < 2.5. Dimuon (uu) events are required to
have two oppositely charged muons, with pr > 15 GeV and
|n| < 2. In addition, at least one hadronic jet must be
reconstructed in the event using an iterative midpoint cone
algorithm [9] with a cone size of AR = /(A¢)? + (Ay)? =
0.5 where ¢ is the azimuthal angle and y is the rapidity. This
jet must satisfy pr' > 20 GeV and | 7/ | < 2.5.

Several processes can mimic the signature of Z + jet
events. These include top quark pair (¢7), diboson (WW,
WZ, and ZZ), and multijet production. To suppress the
contributions from 7 production, events with significant
imbalance in the measured transverse energy E7, due to
undetected neutrinos from the W boson decay
(t > Wb — fu.b), are rejected if E; > 60 GeV. These
selection criteria retain an inclusive sample of 176498
Z + jet event candidates in the ee and upu channels.

To estimate acceptances, efficiencies, and backgrounds,
the Z + jet events (including HF jets) and ¢7 events are
modeled by ALPGEN [10], which generates subprocesses
using higher-order QCD tree-level matrix elements,
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interfaced with the PYTHIA Monte Carlo (MC) event
generator [11] for parton showering and hadronization

and EVTGEN [12] for modeling the decay of particles
containing b and ¢ quarks. Inclusive diboson production
is simulated with PYTHIA. The CTEQ6L1 [13] parton
distribution functions (PDFs) are used in these simulations
and the cross sections are scaled to the corresponding
higher-order theoretical calculations [6]. The multijet back-
ground, where jets are misidentified as leptons, is deter-
mined using a data-driven method [6]. The fractions of non-
Z + jetevents in the ee and uu samples are 9.6% and 1.3%,
respectively. These fractions are dominated by multijet
production where a jet is either misreconstructed as a lepton
in the electron channel, or a lepton from decays of hadrons
in a jet that passes the isolation requirement, in the muon
channel.

This analysis uses a two-step procedure to determine the
HF content of jets in the selected Z 4 jet events. We
employ a HF tagging algorithm [14] to enrich the sample
in b and c jets. The b, ¢, and light jet composition of the
data is then extracted via a template-based fit.

Jets considered for HF tagging are subject to a prese-
lection requirement, known as “taggability” [14], to decou-
ple the intrinsic performance of the HF jet tagging
algorithm from effects related to track reconstruction
efficiency. The jet is required to have at least two associated
tracks with py > 0.5 GeV and the highest-p; track must
have pr > 1 GeV. The efficiency of the taggability
requirement is 90% for both ¢ and b jets.

The HF tagging algorithm is based on a multivariate
analysis (MVA) technique [15] that provides an improved
performance over the neural network HF tagging discrimi-
nant, described in Ref. [14], used in earlier DO analyses.
This new algorithm (MVA,;) also utilizes the relatively
long lifetime of HF hadrons with respect to their lighter
counterparts. Events with at least one jet passing the HF
tagging selection are considered in the analysis.

To extract the fraction of different flavor jets in the
data sample, a second discriminant, Dy, is employed,
which offers improved flavor separation for jets passing
our MV A, requirement [6]. It combines two discriminating
variables, the secondary vertex mass (Mgy) and the
jet lifetime impact parameter (JLIP) [14]: Dy =
0.5 x (Mgy/5 GeV — In(JLIP)/20). The coefficients in this
expression are chosen to optimize the separation of the HF
and light quark components. Figure 1(a) shows the Dy,
distributions (templates) obtained from simulations of all
three considered jet flavors that pass an MV A, requirement.

To measure the relative fraction of ¢ jets in the HF
enriched sample, two approaches were considered. The first
is based on the methods used in Ref. [6] where the
composition of b, ¢, and light jets is extracted by fitting
MC templates to the data. This approach yields a large
uncertainty on the c-jet fraction since the Dy, distribu-
tions of ¢ and light jets are similar. The second approach is
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FIG. 1 (color online). (a) The probability densities of the Dy,
discriminant, normalized to unity, for b, ¢, and light jets passing
the final selection requirements. These templates are obtained
from MC simulations. (b) The Dy, discriminant distribution of
events in the combined sample after background subtraction. The
distributions of the b and ¢ jets are weighted by the fractions
found from the fit. Uncertainties are statistical only.

to suppress events with light jets by employing a more
stringent MVA,; requirement. The remaining small Z +
lightjet contribution, as estimated with data-corrected
simulations, is then subtracted from the D,y data dis-
tribution along with the other backgrounds. The corre-
sponding Dy templates for QCD, top pair production,
diboson, and Z + lightjets are scaled to their estimated
fractions in the final sample. This allows for the data to be
fit with only » and c jet templates. Both methods yield
consistent results, but the second method benefits from a
reduced overall uncertainty as only the normalization of b
and c jet templates are allowed to vary when fitting the data.
Events are retained for further analysis if they contain at
least one jet with an MVA,, requirement. After these
requirements, 2665 Z + jet events are selected where only
the highest-py HF tagged jet is examined. The efficiencies
of the MVA,, selection for b and c jets, and the light
jet misidentification rate are 40%, 9.0%, and 0.24%,
respectively. The background is dominated by Z +
light jet events that comprise 12% of the total sample.
Before the two parameter fit, all background components
are subtracted from the data, yielding a sample of 2125
events.

The remaining sample is mostly composed of Z + b
and Z + ¢ jet event candidates. The corresponding b and ¢
jet fractions of events are measured in the ee and puu
samples separately, yielding c¢ jet flavor fractions of
0.509 + 0.041(stat) and 0.470 + 0.039(stat), respectively.
As these are consistent and the kinematics of the corre-
sponding events are similar, we combine the two samples to
increase the statistical power of the fit. The combined
Dy distribution of the HF-enriched background sub-
tracted data and the fitted templates for the b and c jets are
shown in Fig. 1(b). The corresponding fractions of ¢ and b
jets in the data are found to be 0.486 + 0.027(stat) and
0.514 +0.027(stat), respectively. These fractions are
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combined with the relevant detector acceptances and
efficiencies to determine the ratios of cross sections
using

R.,. = G(Z + Cjet) _ NHch Aincl
T o(Z 4 jey A

_o(Ztcie) _feehy A,
N T b)) fy A
6( + Je) fbetag c

C
Nincletag

6]

where N, is the total number of Z + jet events before the
tagging requirements, Ny is the number of Z 4 jet events
used in the Dy fit, f5 () is the extracted b(c) jet fraction,
and €fagc is the selection efficiency for b(c) jets, which
combines the efficiencies for taggability and MVA,,
discriminant selection. N;,, and Nyg correspond to the
number of events that remain after the contributions from
various background processes have been subtracted. We
subtract contributions from f7, diboson, and multijet
production to obtain N;,,, while we also subtract the
Z + lightjet events when calculating Nyg.

The differences in the detector acceptances for the
inclusive jet Ay, and b(c) jets Ay are estimated from
MC simulations in the kinematic region that satisfies the py
and 7 [8] requirements for leptons and jets. For the
differential measurements, the acceptances are obtained
in bins of py' and p%, and account for the small residual
migration effects that do not cancel in the ratio.

Using Egs. (1), the ratio of the cross sections Z + ¢ jet to
inclusive Z + jet in the combined pu and ee channel, R, i,
is 0.0829 £ 0.0052(stat) and the ratio of cross sections Z +
c jetto Z+ b jet, R, is found to be 4.00 4 0.21(stat).
These ratios have also been measured differentially as a
function of p’' and p%. For R, ;e the highest-p; tagged jet
from the HF enriched sample is used in the numerator,
while the denominator uses the highest-py jet from the
Z + jet sample. The selected bin sizes along with the
corresponding statistics of data events are listed in

TABLE 1. Summary of bins, data statistics after final selection,
and the measured ratios along with the statistical and systematic
relative uncertainties in percent. Bin centers, shown in
parenthesis, are chosen using the prescription in Ref. [16].

_ Stat  Syst Stat  Syst
pr [GeV] Nup R (%) (%] R (%] [%]

20-30 (24.6) 741 0.068 12 16 3.64 85 21
30-40 (34.3) 525 0.084 11 12 397 83 14
40-60 (47.3) 474 0.099 11 9.1 398 10 13

60-200 (78.0) 380 0.085 13 11 430 13 14

p% [GeV]

0-20 (10.2) 285
20-40 (29.5) 763
40-60 (49.0) 588
60-200 (92.7) 487

0.041 29 22 1.15 26 32
0073 82 12 610 82 20
0.104 10 11 5.06 10 15
0.108 13 83 341 13 13

Table I. In each case, all the quantities that enter into
Egs. (1) are determined in each bin.

Several systematic uncertainties cancel when the ratios
are measured. These include those due to the luminosity
measurement, trigger, lepton, and the jet reconstruction
efficiencies. The remaining uncertainties are estimated
separately for the integrated and differential results. For
the two ratios the systematic uncertainties are estimated
separately.

For the integrated R, /i, measurement, the largest sys-
tematic uncertainty of 8.1% comes from the estimation of
the Z + light jet background. This is quantified by compar-
ing the fraction of Z + light jet events extracted from data
and simulations using a three-template (light, ¢, and b jet)
fit. The amount of subtracted Z + light jet events is varied
by the corresponding uncertainty of 20%, and the differ-
ence in the final result is taken as a systematic uncertainty.
This procedure has been repeated for various MVA,
selections and demonstrates stability of the final result.
The next largest systematic uncertainty comes from the
shape of the Dy templates used in the fit. A variety of
different aspects can affect the shape of the templates: two
HF jets being reconstructed as a single jet, models of b and
¢ quark fragmentation, the normalization of the subtracted
background from the non-Z + jet events, the difference in
the shape of the light jet MC template and a template
derived from a light jet enriched dijet data sample, and the
uncertainty of shape of the templates due to MC statistics.
These are all evaluated by varying the central values by the
corresponding uncertainties, one at a time, and repeating
the entire analysis chain, resulting in a 5.5% uncertainty.
An additional uncertainty of 3.4% comes from jet energy
calibration; it comprises the uncertainties on the jet energy
resolution and the jet energy scale. An uncertainty is also
associated with the ¢ jet tagging efficiency (1.9%) [14].
Finally, a small contribution (<0.1%) is coming from the
dependence of the acceptance on modeling of the signal
events. When summed in quadrature the total systematic
uncertainty for the integrated R,/ ratio is 10.6%. The
corresponding total systematic uncertainty is 14.4% for
Ry, and is larger compared to the uncertainty on R i, due
to the strong correlation in the extracted b and c jet
fractions from the two-template fit. Table I lists the total
statistical and systematic uncertainties (added in quadra-
ture) for the differential results. To account for bin
correlations in the differential measurement each system-
atic effect is evaluated by varying the corresponding central
values by their uncertainties before the entire analysis chain
is repeated. Finally, for the integrated ratios we obtain
values of R, = 0.0829 £ 0.0052(stat) + 0.0089(syst)
and R, = 4.00 £ 0.21(stat) + 0.58(syst).

The measurements are compared to predictions from an
MCFM NLO pQCD calculation and three MC event gen-
erators, SHERPA [17], PYTHIA, and ALPGEN. The NLO
predictions are based on MCFM [1], version 6.3, with the
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FIG. 2 (color online). Ratios of the cross sections R
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. and R/, as a function of (a),(b) pJTet and (c),(d) p#%, respectively. The

uncertainties on the data include statistical (inner error bar) and full uncertainties (entire error bar). Various predictions from theoretical
models are also shown. The bands for MCFM predictions in R/ ratios represent variations of the scales up and down by a factor of 2.
The corresponding uncertainties in R/, (less than 4%) are not visible on this scale.

MSTW2008 PDFs [18] and the renormalization and
factorization scales set at % = u3 = M% + p% ... Here,
M is the Z boson mass and pr o 1s the scalar sum of the
transverse momentum for all the jets with p)' > 20 GeV
and |y| < 2.5 in the event. Corrections are applied to
account for nonperturbative effects, on the order of 5%,
estimated using the ALPGEN+PYTHIA simulation. The NLO
pQCD predictions of R/ = 0.0368 and R, = 1.64
[1] disagree significantly with the measurements. In the
case where the intrinsic charm of the proton is enhanced, as
suggested in the CTEQ6.6¢c PDF sets [13], MCEM yields
ratios of R /i = 0.0425 and R.;, = 2.23, which still
disagree with our data.

The uncertainty on the R, /i theoretical predictions is
evaluated by simultaneously changing the up and up scales
up and down by a factor of 2, yielding an uncertainty of up
to 11% on R/, while this uncertainty cancels in R, ;.
However, this uncertainty is smaller than the effect due to
the intrinsic charm enhancement, which is 15% and 36%
for R, /i and R/, respectively.

The ratios of differential cross sections as a function of

et Z . T . .

+ and p7 are compared to various predictions in Fig. 2.
On average, the NLO predictions significantly under-
estimate the data, by a factor of 2.5 for the integrated
results. As for the MC event generators, PYTHIA predictions

are closer to data. An improved description can be achieved
by enhancing the default rate of g — ¢¢ in PYTHIA by a
factor of 1.7, motivated by the y + c jet production
measurements at the Tevatron [19,20].

The largest discrepancy between data and predictions, in
particular for the shape of the differential distributions, is
for R./, as a function of p% [Fig. 2(d)]. The level of
disagreement in shape is quantified for the McFmM NLO
prediction when its integrated result is scaled up to match
the data. We generated a large number of pseudoexperi-
ments and found the p value for the four bins in p% to
simultaneously fluctuate to the observed R, values (or
beyond) to be 2%.

We have presented the first measurements of the ratios
of integrated cross sections o(pp — Z + cjet)/c(pp —
Z+jet) and o(pp — Z+ cjet)/o(pp — Z + bjet), as
well as the ratios of the differential cross sections in
bins of p' and p#, for events with a Z boson decaying to
electrons or muons and at least one jet in the final state.
Measurements are based on the data sample collected
by the DO experiment in run II of the Tevatron, corre-
sponding to an integrated luminosity of 9.7 fb~! at a
center-of-mass energy of 1.96 TeV. For jets with pr' >
20 GeV and [®| < 2.5, the measured integrated ratios
are R,/ = 0.0829 + 0.0052(stat) + 0.0089(syst), and
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R/, =4.00+£0.21(stat) & 0.58(syst). The NLO pQCD
predictions disagree significantly with the results. PYTHIA
agrees better with the measured ratios, especially when the
gluon splitting to ¢¢ pairs is enhanced.
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