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The nucleon structure function FN
2 computed in a holographic framework can be used to describe nuclear

deep inelastic scattering effects provided that a rescaling of the Q2 momentum and of the IR hard-wall
parameter z0 is made. The ratios RA ¼ FA

2=F
N
2 can be obtained in terms of a single rescaling parameter λA

for each nucleus. The resulting ratios agree with the experiment in a wide range of the shadowing region.
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Introduction.—The AdS/CFT correspondence [1], an
important tool to analyze nonperturbative aspects of gauge
theories, has been successfully used to study features of
QCD [2]. In its application to deep inelastic scattering
(DIS) at strong coupling [3,4], the nucleon structure
function FN

2 ðx;Q2Þ at small Bjorken variable x has been
represented as the sum of a conformal term and of a
contribution due to quark confinement, crucial to fit the
data. The evaluation of these contributions requires the
holographic nucleon wave function, which is assumed to be
peaked at distancesOð1=Q0Þ close to the infrared boundary
z0, with Q0 of the order of the nucleon mass.
Nonperturbative, confinement dynamics shows up also

in the modification of the structure functions of a nucleon
in a nucleus. The proposed theoretical models of these
effects are based on the effective change of the mean square
distances among quarks and gluons in a nuclear environ-
ment with respect to the free nucleon case [5].
Nuclear effects are described comparing the structure

functions of the nuclear target per nucleon to the free
nucleon ones and, for electroproduction, the ratios RA ¼
FA
2 ðx;Q2Þ=FD

2 ðx;Q2Þ are considered, with FA
2 and FD

2 the
structure functions per nucleon in the nucleus A and in
deuterium D (where the nuclear binding is considered
negligible). Nuclear modifications depend on x: x ≤ 0.1 is
the shadowing region where RA < 1; for large x one has
the so-called EMC effect; in the range 0.1 < x < 0.25 there
is the antishadowing with RA > 1, usually obtained by the
energy-momentum sum rule. The understanding of these
modifications requires to evaluate the “distortion” of the
free nucleon wave function due to nuclear binding. In the
small-x region, dominated by Pomeron exchange, the AdS/
CFT strong coupling BPST Pomeron kernel [6] is a good
framework to study nuclear deep inelastic structure func-
tions, provided one knows the holographic baryon wave
function in the nucleus. A simplified approach can be based
on the observation that the spatial separation between
quarks determines the strength of the quark-Pomeron
coupling [7] and that the effective confinement size is
modified in a nucleus.

Following this point of view, we consider an approach
to shadowing in an AdS/CFT framework, describing the
nuclear binding effects on the nucleon wave function
through an effective distance 1=Q0

A and an effective
confinement boundary zA0 , and studying the scaling proper-
ties of the holographic structure function F2 under the
change Q0 → Q0

A and z0 → zA0 . In this way, nuclear effects
are described by rescaling the confinement parameters. The
results agree with the experimental data.
Approaches to nuclear DIS effects.—In models of

shadowing and EMC effects, the description of the nuclear
modifications is based on the change of the effective mean
square distance among quarks and gluons in a nuclear
environment with respect to the free nucleon case [5].
In the x-rescaling model the EMC effect is described by

rescaling x in the free nucleon structure function [8],

FA
2 ðx;Q2Þ ¼ FD

2 ðx=ẑ; Q2Þ; (1)

with ẑ≃ 1 − ϵ=M, M the proton mass and ϵ the energy
necessary to “ionize” a nucleus and make it emit a nucleon.
However, the values of ϵ able to fit the large-x data exceed
the nuclear binding calculations [5].
The Q2-rescaling model of the EMC effect is based on

the relation [9,10]

FA
2 ðx;Q2Þ ¼ FD

2 ðx; χAQ2Þ; (2)

indicating that the effective Q2 for a bound nucleon is
different from the free nucleon. This dynamical property
is investigatedhere in theholographic framework. It is related
to the modification of the quark confinement size in the
nucleus [9,10]: quarks and gluons are no longer confined
to specific nucleons, but spread over distances larger than
the free nucleon size. By studying the structure function
moments, starting fromaQ2 regionwhere thevalencepicture
is a good approximation, one can show that inQCD, for large
Q2, this change of scale is connected to the strong coupling
constantαs. Thex-andQ2-rescalingmodels, althoughdiffer-
ent in their starting points, can be related [11].
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The QCD Q2 dependence of structure functions can be
also applied to shadowing at small x, including the effect
of gluon recombination in nuclei which is neglected in the
free nucleon evolution equation [12]. Modifying the linear
Q2 evolution equation one shows that the recombination
depletes the gluon distribution at small x, which reflects
into a depletion of sea quark distribution [12]. The Q2

dependence of parton distributions in nuclei based on
linear QCD evolution equations at next-to-leading order
is described in Ref. [13].
A different nonperturbative approach considers that the

small-x behavior of F2 is controlled by Pomeron exchange
[14]. In a nuclear environment the effective coupling of the
Pomeron to a quark is suppressed because of the nucleon
overlap. Although quarks and gluons are no longer con-
fined to specific nucleons but rather spread on distances
larger than the free nucleon size, the average spatial
separation between quarks before color neutralization
decreases, with the Pomeron coupling directly related with
this typical size [7].
Hence, a physical description of EMC and shadowing

effects can be based on the effective modification of the
dynamical scales in deep inelastic scattering on nuclear
target respect to the free nucleon case. This rescaling, and
in particular the Q2 one, is a property of the AdS/CFT
approach to deep inelastic scattering, not only in the
conformal limit but also if the confinement dynamics is
taken into account.
Nuclear structure functions in a holographic

framework.—The possibility of an approach to DIS on a
proton based on AdS/CFT duality was analized in the
Polchinski-Strassler first proposal [3]. Here we adopt the
method in [4], based on the calculation of the virtual γ�p
total cross section, which allows us to express, e.g., the
structure function F2 as the sum of two contributions: a
model-independent term for conformal gauge theories and
an additional nonconformal term accounting for confine-
ment. This latter (model-dependent) contribution is
obtained by breaking conformal invariance through a sharp
cutoff (“hard wall” ) of the AdS holographic space [15].
One starts from the matrix element of two R currents in a

hadron of momentum P and charge Q,

Tμν ≡ i
Z

d4yeiq·yhPQjT½JμðyÞJνð0Þ�jPQi

¼ F1ðx;Q2Þ
�
ημν − qμqν

q2

�

þ 2x
q2

F2ðx;Q2Þ
�
Pμ þ qμ

2x

��
Pν þ qν

2x

�
; (3)

(with μ, ν four-dimensional indices, ημν Minkowski metric,
x ¼ Q2=2Pq and Q2 ¼ −q2), which allows us to extract
the DIS structure functions for electron-hadron scattering
and, in particular, F2ðx;Q2Þ. The AdS/CFT calculation
involves the couplings

gs ¼
g2YM
4π

¼ αYM ¼ λ

4πNC
; R ¼ α0ð1=2Þλð1=4Þ (4)

with gs ≪ 1 and λ ≫ 1. R is the AdS radius. In the
following, the coupling ρ ¼ 2=

ffiffiffi
λ

p
is used.

The dual string calculation of thematrix element (3), or of
its imaginary part appearing in DIS processes, describes the
scattering in the AdS space, and involves various quantities.
First, to describe the transition γ�N → γ�N ≡ 1; 2 → 3; 4,
states dual to the initial-final nucleon N are required, i.e.,
the hadronic state jPQi in (3). These states are represented
by normalizable wave functions ϕNðzÞ depending on the
holographic coordinate z (positive and with the UV brane
corresponding to z ¼ 0), and are obtained in principle from
a suitable equation of motion. The calculation of the matrix
element (3) involves the transition function

P24ðzÞ ¼
ffiffiffiffiffiffi−gp �

z
R

�
2

φNðzÞφNðzÞ: (5)

The current that couples to the hadrons in (3) induces
non-normalizable modes of the gauge fields. In the bulk,
such fields A satisfy Maxwell’s equations of motion; their
solutions, in the Lorentz gauge and for R ¼ 1, are given in
terms of Bessel functions: Aμðy; zÞ ¼ nμðQzÞK1ðQzÞeiq·y
and Azðy; zÞ ¼ iðq · nÞðQzÞK0ðQzÞeiq·y, with nμ a polari-
zation vector. To determine the structure function F2 in (3)
a transition function P13 is needed, and is given by [4,16]

P13ðz;Q2Þ ¼ 1

z
ðQzÞ2½K2

0ðQzÞ þ K2
1ðQzÞ� (6)

with Q ¼
ffiffiffiffiffiffi
Q2

p
.

The last ingredient is the scattering kernel. This has been
expressed in terms of a Pomeron Regge pole contribution
[6], and allows us to write the structure function F2 at low x
as an eikonal sum with a convolution of the transition
functions (5) and (6) [4]:

FN
2 ðx;Q2Þ ¼ Q2

2π2

Z
d2b

Z
dzdz0P13ðz;Q2ÞP24ðz0Þ

× Reð1 − eiχðs;b;z;z0ÞÞ: (7)

b is the impact parameter, with b⃗ the transverse Minkowski
space vector for γ�p scattering; s is the center-of-mass
energy squared of the γ�-target system. The eikonal χ can
be derived for conformal theories; it can also be modified
by the inclusion of conformal symmetry-violating effects.
Conformal limit:—For conformal fields the free nucleon

structure function FN
2 can be obtained from (7) and is given

by [4]

FN
2 ðx;Q2Þ ¼ g20ρ

3=2

32π5=2

Z
dzdz0

zz0Q2

τ1=2
P13ðz;Q2ÞP24ðz0Þ

× eð1−ρÞτ exp ½Φðz; z0; τÞ�; (8)
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where x≃Q2=s and g20 a constant. The conformal invariant
τ is defined as τ ¼ log ðρzz0s=2Þ. The function Φ is
the BPTS Pomeron kernel integrated in the impact
parameter [6],

Φðz; z0; τÞ ¼ − ðlog z − log z0Þ2
ρτ

: (9)

The transition function P24 involves the nucleon wave
function in the bulk ϕNðzÞ. In Ref. [4] it is assumed that
the wave function ϕNðzÞ is sharply peaked near the infrared
boundaryz0,with1=Q0≤ z0 andQ0 close to thenucleonmass,

P24ðz0Þ≃ δðz0 − 1=Q0Þ; (10)

an expression adopted in the following. An explicit bulk
model for thenucleonwouldbe required to improve thewave
function profile; modifications of this local approximation
can be considered [17]. A further simplification consists in
replacing also P13 by a local expression,

P13ðz;Q2Þ≃ Cδðz − 1=QÞ; (11)

withC≃ 1. Since the integrandwithP13 in Eq. (8) is peaked
for z≃ 1=Q, one canverify that this is a good approximation
of Eq. (6). The resulting F2 reads [4]

FN
2 ðx;Q2Þ ¼ g20ρ

3=2

32π5=2
Q
Q0

1

τ1=2
eð1−ρÞτe−½log2ðQ=Q0Þ=ρτ�: (12)

The nucleon structure function FA
2 at small x in a nuclear

environment can be obtained rescaling the effective size of
the nucleon wave function in the nucleus A,

Q0
A ¼ λAQ0; (13)

in Eq. (12). In the conformal limit F2 depends on the ratio
Q=Q0; therefore, the rescaling Q0

A → Q0 corresponds to the
Q2 rescaling Q2 → Q2=λ2A. Hence, in this limit one has
RA ¼ FA

2=F
D
2 neglecting the proton-neutron difference.

Therefore, in the conformal limit the Q2 rescaling at small
x naturally arises in the AdS/CFT approach. This is not
surprising, since the limit is reliable at largeQ2. Notice that
in the local approximation (10,11), τ ¼ log ðρQ=2xQ0Þ;
therefore, the rescaling Q0

A ¼ λAQ0 could be reabsorbed in
x → λAx. However, due to the Q2 dependence of F2 in
Eq. (12), the x rescaling is not completely equivalent to
the rescaling in Q2, and FA

2 ðx;Q2=λ2Þ ≠ FA
2 ðλx;Q2Þ. The

x-rescaling method in the holographic framework will be
discussed in a dedicated study [17].
Confinement effects:—The expression for FN

2 for the
free proton structure functions, based on the conformal
BPST Pomeron, does not fit the HERA data in the low Q2

region, where confinement is the main dynamical mech-
anisms [4]. One needs to account for confinement, which
can be described including an infrared boundary z0 on the z
coordinate of the bulk. This scale could be related to the

ΛQCD parameter. It produces a mass gap, a modification of
the eikonal and a nonconformal contribution to FN

2 which,
for a single Pomeron, reads [4]

FN
2ctðx;Q2; z0Þ ¼

g20ρ
3=2

32π5=2

Z
dzdz0

zz0Q2

τ1=2
P13ðz;Q2ÞP24ðz0Þ

× eð1−ρÞτe−
log2ðzz0=z2

0
Þ

ρτ Gðz; z0; τÞ: (14)

In this expression the z0 dependence is shown explicitly;
Gðz; z0; τÞ is given by

Gðz; z0; τÞ ¼ 1–2
ffiffiffiffiffiffiffiffi
ρπτ

p
eη

2

erfcðηÞ; (15)

and

η ¼ − log ðzz0=z20Þ þ ρτffiffiffiffiffi
ρτ

p : (16)

With the local approximation (10), (11), Eq. (14) reduces to

FN
2 ðx;Q2; Q2

0Þ ¼
g20ρ

3=2

32π5=2
ðQ=Q0Þ
τ1=2

eð1−ρÞτ

× e−
log2ðQ2

0
=ðQQ0ÞÞ
ρτ G

�
1

Q
;
1

Q0 ; τ
�
; (17)

where Q0 ¼ 1=z0 [4].
In the description of nuclear effects by the rescaling

Q0
A ¼ λAQ0, the τ dependence on the ratio Q=Q0 is

remarkable, and would suggest a Q2 rescaling. However,
there is also a nontrivial Q2 behavior in the log factors and
in η due to the new scale Q0. The dependence on Q0 in
Eq. (14) is in the form Q2

0=QQ0, and therefore the rescaling
Q0

A ¼ λAQ0 can be reabsorbed in the Q2 rescaling Q2 →
Q2=λ2A provided that the confinement distance in nuclear
environment scales in the same way,

Q2
0 → Q2

0=λ
2
A: (18)

Our phenomenological analysis is done using this rescaling
of Q0 at fixed x.
Comparison with nuclear DIS data, comments, and

conclusions.—The knowledge of structure functions and
parton distribution functions in nuclei is important in
relativistic heavy ion collisions, since the “hard probes”
of the quark-gluon plasma require a control of cold nuclear
effects, i.e., the modifications depending on the nuclear
dynamics [13,18,19].
The results of the holographic approach can be compared

to experimental data [20] by applying the Q2 rescaling
scheme based on Eqs. (12), (18): when Q0

A ¼ λAQ0 one
rescales Q2 → Q2=λ2A and Q2

0 → Q2
0=λ

2
A. The Q

2 rescaling
is exact not only in the conformal part but also in the
confinement contribution. This implies
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FA
2 ðx;Q2Þ ¼ FN

2;cl

�
x;
Q2

λ2A

�
þ FN

2;ct

�
x;
Q2

λ2A
;
Q2

0

λ2A

�
; (19)

with the conformal term FN
2;cl in Eq. (12) and the confine-

ment one FN
2;ct in Eq. (17). For each nucleus there is only

one parameter λA.
Figures 1 and 2 report the comparison of the theoretical

results with NMC data [20] in the small-x region, x ≤ 0.07,
for different nuclei. The theoretical values are obtained
using the average Q2 for a given x, the other parameters
being fixed as in [4]. The agreement with data is remark-
able, despite the neglect of the proton and neutron structure
function difference. The optimization of the parameters λA
and a complete analysis is presented elsewhere [17];
considering the neutron-proton isospin breaking improves
the χ2=d.o.f.
Understanding the agreement of the holographic result

with nuclear data is easier if we consider the origin of (13)
and (18). In the AdS/CFT framework, this comes from the
identification of the bulk coordinate with the energy scale
of the dual theory: considering the form of the AdS metric
in Poincaré coordinates, a coordinate rescaling xμ → λxμ on
the boundary corresponds to z → λz in the bulk. In nuclei,
due to the nucleon overlap, the average distance among
quarks and gluons decreases and the color neutralization
infrared (confinement) scale increases. Such modifications
in the boundary correspond in the bulk, respectively, to
z0 → z0=λ and z0 → λz0, i.e., the prescription employed to
describe the nuclear effects by the momenta redefinition.
The dynamical generation of the effective IR scale remains
to be clarified, with a possible analogy with the generation

of the saturation scale in free nucleon within this frame-
work [21].
The method inspired by AdS/CFT provides a description

of the nuclear effects in the DIS structure functions based
onQ2-rescaling which corresponds to a geometrical scaling
of the confinement size for a bound nucleon. The same
result can be obtained in other, rather different, frame-
works. Indeed, at high energy, the structure functions can
be evaluated in the QCD dipole model [22,23], where the
virtual photon γ� splits in a quark-antiquark dipole inter-
acting with the target (T). Assuming, within this model,
that the energy and target size dependence of the dipole-
target cross section σγ

�T can be encoded in a saturation
scaleQS;TðxÞ [24], that there is no dependence of the dipole
wave function on the quark and antiquark distribution of
the longitudinal momenta [25], and that there is a minor
dependence of the saturation scale on the specific scattering
process, the dimensionless ratio σγ

�T=πR2
T depends only

on τ2T ¼ Q2=Q2
S;TðxÞ. The geometric scaling between the

nucleus and the nucleon cross sections [24]

σγ
�AðτAÞ
πR2

A
¼ σγ

�NðτNÞ
πR2

N
; (20)

with radii RN;A and

τ2A ¼ τ2N

�
πR2

A

AπR2
N

�
1=δ

; (21)

implies the relation
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FIG. 1 (color online). Experimental data (black points) [20]
and AdS/CFT results based on Q2 rescaling (red squares)
for various nuclei. The values of the experimental average Q2

(in GeV2), from the first to the last bin in x, vary in the ranges
[0.77–6.3] (He=D), [3.4–9.8] (Be=C), [3.4–11.6] (Al=C),
[3.4–11.8] (Fe=C). The theoretical values are obtained by
Eq. (19) using the experimental average Q2 for given x and
the λA parameters in the first column of Table I. The χ2=d.o.f. is
1.09 (He=D), 0.21 (Be=C), 0.23 (Al=C), and 0.41 (Fe=C).
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FIG. 2 (color online). Low-x experimental data for RA (black
points) [20] compared to holographic results (red squares) for
different nuclei. The experimental average Q2 (in GeV2), from
the first to the last bin in x, varies in the ranges [0.034–1.4]
(Li=D), [0.035–1.6] (C/D). The theoretical values are obtained
using Eq. (19) and the experimental average Q2 for given x. The
χ2=d.o.f. is 0.93 (Li=D) and 1.61 (C/D).
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Q2
S;A ¼ Q2

S;N

�
AπR2

N

πR2
A

�
1=δ

: (22)

The relation between the structure function per nucleon
FA
2 and σγ

�A=πR2
A involves the factor Q2πR2

A=A, which
can be approximated by Q2=Q2

S;A if the x dependence
of the saturation scale is neglected. As a result, the
dependence of FA

2 on Q2=Q2
S;A corresponds to rescaling

Q2 → Q2=λ2A;dip, with

λA;dip ¼
�
AπR2

N

πR2
A

�
1=2δ

: (23)

A good fit of low-x nuclear data in the dipole model is
obtained for RA ¼ ð1.12A1=3 − 0.86A−1=3Þ fm, πR2

N ¼
1.55 fm2 and δ ¼ 0.79 [24].
In Table I we compare the parameters λA obtained in the

holographic framework and in the QCD dipole picture.
Although the theoretical approaches are different, the devi-
ation in this parameter is restrained in the range 5%–11%
going from Li to Fe; for Pb the deviation is about 32%.
The rescaling Q0 → Q0=λA corresponds to the modifi-

cation zA0 ¼ λAz0, that is to an increase of the confinement
size in nuclei. It is interesting to compare the results also
with the changes in the confinement size in a nucleus λA;nuc
evaluated by the overlap of two nucleons interacting by a
Reid soft-core potential [10], reported in Table I. In this
case the deviation on λA is between 4% and 8% from Li to
Fe, and 12% for Pb.
The modification of the confinement sizes is a dynamical

property of the bound nucleons, independent of x, which
permits the description of nuclear effects at low x. On the
other hand, at larger x one has the EMC and antishadowing
regions. A general approach in the whole kinematical
region 0 < x < 1 is still lacking, but a Q2 rescaling,
although with different features for large and low x, could
be the unifying dynamical element. We have found that,
starting from a gauge-gravity duality approach, a reliable
description of nuclear shadowing can be obtained rescaling
the virtual photon scale Q2 “seen” by a parton in a bound
nucleon.
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