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When a cosmic microwave background (CMB) photon travels from the surface of last scatter through
spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This
gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon
trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent
with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well
as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation
does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to
higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general
linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the
polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the
rotation largely cancel those induced by the curl component of deflection.
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Weak gravitational lensing of the cosmic microwave
background (CMB) allows us to probe cosmic structures
along the line of sight. Most generally, metric perturbations
affect a photon in three ways: the photon energy is shifted,
its direction of propagation is deflected, and its plane of
polarization is reoriented. Considerable attention has been
focused in the literature on the deflection, mostly by scalar
metric perturbations (density perturbations) [1,2], an effect
that has now been observed [3–7]. In particular, deflection
induces B modes in the CMB polarization [8,9], which
have recently been detected [10]. Lensing by vector or
tensor metric perturbations—that may arise, for example,
from cosmic strings [11] or from inflationary gravitational
waves [12–15]—have also been studied.
Metric perturbations will also rotate the plane of polari-

zation of a photon. In a perturbed spacetime, the polarization
vector is parallel transported along the geodesic, while the
reference basis vectors with respect to which a local
observer measures the orientation of the polarization are
not. The mismatch results in an observed polarization state
that deviates from what one would otherwise observe in flat
spacetime. Skrotsky first considered this effect in the context
of gravitomagnetic drag due to massive rotating bodies [16].
Later work extended that study to weak gravitational fields
generated by other localized masses [17].
However, rotation of polarization has not been properly

included in the context of weak lensing of CMB polari-
zation by general nonlocalized lenses. The effect occurs
for vector or tensor linear metric perturbations; it vanishes
for scalar perturbations at linear order, but should appear at
nonlinear orders. Previously, rotation of polarized radiation
from the CMB or from quasars by primordial vector
perturbations has been considered [18]. Nevertheless, the
important implications of the combination of this effect

with those of the lensing deflection have not been appre-
ciated. In this Letter, we systematically consider this effect
from the most general linear metric perturbations, and find
that the rotation angle of the polarization is the same as that
for the rotation of the image, thus implying full correlation
between the rotation of the polarization and the curl part of
the deflection field. Including the rotation, we present
complete analytical results for the weak lensing of the CMB
temperature and polarization power spectra. We will
demonstrate, with weak lensing by gravitational waves,
that interference between curl deflection and rotation
considerably reduces the B-mode power converted from
intrinsic E-mode power as found previously [14,19,20],
making the gradient part and the curl part of the deflection
field equally efficient at generating lensing B-mode
polarizations.
A Friedmann-Robertson-Walker universe perturbed by

the most general linear metric perturbations is described by
the following metric:

ds2 ¼ a2ðτÞ½−ð1þ 2Aðx⃗; τÞÞdτ2 þ 2Biðx⃗; τÞdτdxi
þ ðδij þ hijðx⃗; τÞÞdxidxj�; (1)

where τ is the conformal time and x⃗ is the comoving
position, and A, Bi, and hij parametrize perturbations.
Consider a photon, characterized by its four-momentum

pμ and the polarization vector ϵμ, that propagates from the
source location to the observer at the origin. Given that the
photon is seen by the observer in direction ni (measured
with respect to spatial tetrads eμðiÞo; i ¼ 1; 2; 3 at observer’s
location) in the sky, its trajectory is solved from the
geodesic equation dpμ=dλ ¼ −Γμ

αβp
αpβ, with respect to
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the affine parameter λ. As the photon travels along the null
geodesic, ϵμ is parallel transported,

dϵμ=dλ ¼ −Γμ
αβp

αϵβ: (2)

At a given location in spacetime, an observer measures
photon polarization by projecting ϵμ onto the screen-
projected plane perpendicular to both the four-momentum
pμ and the observer’s four velocity [21]. The polarization
can then be expanded using local tetrads with components
ϵðνÞ ¼ eμðνÞϵμ, which determine the orientation of polariza-
tion. A set of local tetrads eμðνÞ, for ν ¼ 0, 1, 2, 3, need to be
specified at every spacetime point, since the comparison of
the directions of vectors at separated locations is nontrivial
in a general perturbed spacetime. Up to linear order in
metric perturbations, an irrotational choice can be made,

eμð0Þ ¼ a−1f1−A;0
→g; eμðiÞ ¼ a−1fBi;δij − hij=2g; (3)

which reduces to the natural choice eμðνÞ ¼ a−1δvμ in the
absence of perturbations. The rotation of polarization due
to lensing can be then defined as the unique rotation about
the line of sight that takes the observed components ϵðiÞo,
for i ¼ 1; 2; 3, to what they would be in the absence of
perturbations. Note that the latter would simply be ϵðiÞs for
i ¼ 1; 2; 3, at source location, since without perturbations
local tetrads would be identical everywhere.
Under the Born approximation, the rotation angle ψ

for polarization is obtained by integrating along the
unperturbed line of sight,

ψðn̂Þ ¼ ð1=2Þεijknk
Z

χs

0

dχð∂iBj − nl∂ihjlÞ: (4)

Here εijk is the antisymmetric Levi-Civita tensor in three
dimensions, and the comoving radial distance χ from
the observer parametrizes the line of sight. Note that a
nonzero ψ is not a coordinate artifact. In fact, a gauge
transformation modifies Eq. (4) by only boundary terms.
Those correspond to Lorentz transformations of the
source frame and the observer frame, since Eq. (3) defines
different tetrads in different gauges.
Unlike Faraday rotation, the rotation due to metric

perturbations is achromatic. Scalar metric perturbations,
namely the potential A, the gradient part of Bi, and the trace
part and the longitudinal part of hij, do not contribute to ψ
at linear order. On the contrary, vector perturbations—the
divergence-free part of Bi or the transverse vector parts of
hij, as well as tensor perturbations—the transverse-tensor
parts of hij, do induce rotation at this order.
Nonuniform deflection of the photon direction θiðn̂Þ by

gravitational lensing leads to distortions in the observed
image of distant objects. The deflection angle θiðn̂Þ is given
by [22]

θiðn̂Þ ¼ Πi
j

�
1

2
nkðhoÞjk −Bj

o −
Z

χs

0

dχ

��
1− χ

χe

�

×

�
∂jAþ nk∂jBk − 1

2
nknl∂jhkl

�
−Bj − nkhjk

χe

��
;

(5)

where Πi
j ¼ δij − ninj. The deflection angle is conven-

tionally decomposed into a gradient potential ϕðn̂Þ and a
curl potential Ωðn̂Þ through θi ¼ ∇iφ − εi

jknj∇kΩ, where∇i is the angular gradient on the two-dimensional sky.
In particular, the curl potential, related to the antisymmetric
part of the shear tensor∇iθj, describes rotation of the image
[23]. Using Eqs. (4) and (5), we find that the rotation angle
ψ for polarization is related to the angular Laplacian of the
curl potential,

ψðn̂Þ ¼ ð1=2Þεijknj∇kθ
iðnÞ ¼ −ð1=2Þ∇2Ωðn̂Þ; (6)

for general linear metric perturbations. The rotation of the
photon polarization and the rotation of a lensed image
are distinct physical phenomena; while the former is
meaningful for an individual light ray, the latter applies
to a small but extended object on the sky. However, Eq. (6)
establishes that the two rotations are quantitatively iden-
tified with each other, given that the rotation angle of lensed
image is also ψ I ¼ −ð1=2Þ∇2Ω [13,24]. This reflects the
universal influence of metric perturbations on a bundle of
light rays along the geodesic.
A statistically isotropic lens field between a source

surface at certain redshift and the observer is characterized
by angular (cross-)power spectra for deflection potentials
ϕ, Ω, and the rotation ψ . Without other physical mecha-
nisms (e.g., Faraday rotation in a magnetic field) to rotate
the polarization, ψ and Ω are maximally correlated as in
Eq. (6), and the (cross-)power spectra are related by

Cψψ
J ¼ ½JðJ þ 1Þ=2�CΩψ

J ¼ ½JðJ þ 1Þ=2�2CΩΩ
J ; (7)

where J describes the angular scale of the lens. On the
other hand, the gradient potential ϕ, which is a true scalar,
does not correlate with the pseudoscalars Ω and ψ if the
stochastic lens foreground preserves parity.
The effects of weak lensing on the full-sky CMB (cross-)

power spectra of both temperature and polarization have
been presented in Ref. [2] for a gradient deflection field,
and in Ref. [14] for both gradient and curl deflection
potentials. However, in addition to deflection, rotation of
polarization mixes the spin-2 Stokes parameters through

Qðn̂Þ � iUðn̂Þ → e∓2iψðn̂Þ½Qðn̂Þ � iUðn̂Þ�; (8)

and therefore modifies the E-mode and B-mode multipoles.
The mixing takes a form of the direction-dependent
cosmic birefringence originally considered for new physics
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coupled to electromagnetism [25]. Here, we account for
how rotation of the polarization affects E-mode and B-
mode power spectra, and therefore for the first time present
complete results for the lensed CMB power spectra from
general linear metric perturbations.
We denote the unlensed CMB power spectra by CXY

l
for X, Y ¼ Θ, E, B, and those after lensing by ~CXY

l with

the tilde. The lensed power spectra are obtained by
averaging over all lens realizations, and therefore preserve
statistical isotropy and parity if the lens field does so. The
corrections δCXY

l ¼ ~CXY
l − CXY

l , up to linear order in lens
power spectra, are (the results presented below have
corrected sign mistakes in Ref. [14], as pointed out in
Refs. [19,20])

δCΘΘ
l ¼ −lðlþ 1ÞRCΘΘ

l þ 1

2lþ 1

X
l0J

½Cφφ
J ðFφ

ll0JÞ2Pþ
ll0JC

ΘΘ
l0 þ CΩΩ

J ðFΩ
ll0JÞ2P−

ll0JC
ΘΘ
l0 �; (9)

δCΘE
l ¼ −ðl2 þ l − 2ÞRCΘE

l − 1

2lþ 1

X
l0J

½Cφφ
J Fφ

ll0JG
φ
ll0JP

þ
ll0JC

ΘE
l0 þ CΩΩ

J FΩ
ll0JG

Ω
ll0JP

−
ll0JC

ΘE
l0 �

þ 2

2lþ 1

X
l0J

2

JðJ þ 1ÞC
Ωψ
J FΩ

ll0JH
ψ
ll0JP

−
ll0JC

ΘE
l0 ; (10)

δCEE
l ¼ −ðl2 þ l − 4ÞRCEE

l − 4SCEE
l

þ 1

2lþ 1

X
l0J

½Cφφ
J ðGφ

ll0JÞ2ðPþ
ll0JC

EE
l0 þ P−

ll0JC
BB
l0 Þ þ CΩΩ

J ðGΩ
ll0JÞ2ðP−

ll0JC
EE
l0 þ Pþ

ll0JC
BB
l0 Þ�

þ 4

2lþ 1

X
l0J

�
4

J2ðJ þ 1Þ2 C
ψψ
J ðHψ

ll0JÞ2 −
2

JðJ þ 1ÞC
Ωψ
J GΩ

ll0JH
ψ
ll0J

�
ðP−

ll0JC
EE
l0 þ Pþ

ll0JC
BB
l0 Þ; (11)

δCBB
l ¼ −ðl2 þ l − 4ÞRCBB

l − 4SCBB
l

þ 1

2lþ 1

X
l0J

½Cφφ
J ðGφ

ll0JÞ2ðP−
ll0JC

EE
l0 þ Pþ

ll0JC
BB
l0 Þ þ CΩΩ

J ðGΩ
ll0JÞ2ðPþ

ll0JC
EE
l0 þ P−

ll0JC
BB
l0 Þ�

þ 4

2lþ 1

X
l0J

�
4

J2ðJ þ 1Þ2 C
ψψ
J ðHψ

ll0JÞ2 −
2

JðJ þ 1ÞC
Ωψ
J GΩ

ll0JH
ψ
ll0J

�
ðPþ

ll0JC
EE
l0 þ P−

ll0JC
BB
l0 Þ; (12)

where we define the mean square deflection angle R ¼ P
J½JðJ þ 1Þð2J þ 1Þ=ð8πÞ�ðCφφ

J þ CΩΩ
J Þ, and the mean square

rotation angle S ¼ P
J½ð2J þ 1Þ=ð4πÞ�Cψψ

J . The five lensing kernels involved are given explicitly by

Fφ
ll0J ¼ FΩ

ll0J ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þl0ðl0 þ 1Þ

p ffiffiffiffiffiffiffiffiffiffiffi
Πll0J

4π

r �
l J l0

0 −1 1

�
; (13)

Gϕ=Ω
ll0J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

2

r ffiffiffiffiffiffiffiffiffiffiffi
Πll0J

4π

r " ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0 þ 2Þðl0 − 1Þ

2

r �
l J l0

2 −1 −1
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0 þ 3Þðl0 − 2Þ

2

r �
l J l0

2 1 −3
�#

; (14)

Hψ
ll0J ¼

JðJ þ 1Þ
2

ffiffiffiffiffiffiffiffiffiffiffi
Πll0J

4π

r �
l J l0

2 0 −2
�
; (15)

where we have introduced the short-hand notation
Πl1l2… ≡ ð2l1 þ 1Þð2l2 þ 1Þ…. These results consis-
tently satisfy power conservation; i.e., lensing conserves
both

P
lð2lþ 1ÞCΘΘ

l and
P

lð2lþ 1Þ½CEE
l þ CBB

l � for
arbitrary intrinsic CMB power spectra and arbitrary lens

power spectra, because deflection and rotation both redis-
tribute power but do not create anisotropies.
Parity conservation imposes a selection rule on lþ l0 þ

J ¼ even or odd through P�
ll0J ¼ ð1þ ð−1Þlþl0þJÞ=2. For

example, lensing can generate B-mode power (on scale l)
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from E-mode power (on scale l0) through curl-type
deflection Ω (on scale J); since E-mode polarization is
parity even, while B-mode polarization and Ω are parity
odd, the coupling exists only if lþ l0 þ J ¼ even.
Rotation of polarization modifies previous lensing

results through the rotation-angle power spectrum and its
cross correlation with the curl deflection. Therefore, In
Eqs. (9)–(12), terms either proportional to S or involving
Cψψ
J and CΩψ

J are new. In particular, the new effects modify
the prediction for B-mode power converted from E-mode
power by lensing.
Although the results derived above are entirely appli-

cable to general metric perturbations, we illustrate for a
stochastic background of gravitational waves from infla-
tion. Assuming the WMAPþ BAOþH0 best-fit cosmol-
ogy [26], we consider a scale-invariant primordial tensor
power spectrum with tensor-to-scalar ratio r ¼ 0.13. In
Fig. 1 where the power spectrum for the lensing-induced
CMB polarization Bmodes is plotted, it can be seen that the
effects of deflection and rotation cancel each other due to
cross correlation, yielding a prediction for these polariza-
tion B modes that is ∼4 times smaller than what one would
anticipate from deflection alone [19,20]. In Fig. 2, we
artificially set CΩΩ

J ¼ Cφφ
J [Cψψ

J and CΩψ then follow from
Eq. (7)]. If the rotation ψ is neglected, we find agreement
with Ref. [20] that Ω is more efficient than ϕ at converting
E modes into B modes. It is striking, however, that
including the rotation coherently with Ω yields exactly
the same B-mode power as induced by ϕ, as is evident from
the coincidence of the two dashed curves in the plot.
Why should deflection and rotation cancel instead of

enhance each other in B-mode generation? Figure 3 pro-
vides a heuristic picture, where we start with a polarization
map of concentric patterns with only E-mode (left panel).

A curl potential, which we choose to give uniform ψ via
Eq. (6), shifts pixels in the tangential direction along
concentric circles, and therefore induces a B-mode com-
ponent (middle panel). The curl deflection therefore effec-
tively “rotates” the sky about the origin, but keeps the
polarization orientation fixed. However, the gravitational
field also rotates the polarizations (right panel), in particular
with an angle ψ exactly equal to the rotation angle of the
patch. This to a large extent undoes the spurious B mode
generated by deflection. If ψ were to rotate polarizations in
the opposite way the sky rotates, this cancellation would
not occur.
Lensing B modes from Ω and from ψ should not be

regarded as separate signatures, since metric perturbations
always generate Ω and ψ simultaneously and coherently.
Therefore, our results can be better interpreted as necessary
corrections to the previous (incomplete) results for curl
deflection of polarizations. Reconstruction schemes for Ω,
previously developed to either monitor systematics [13] or
to constrain primordial vector or tensor perturbations [27],

FIG. 1 (color online). Lensing B-mode power spectrum
from inflationary gravitational waves with r ¼ 0.13. We compare
contributions from deflection (dashed), from rotation (dash-
dotted), as well as the full result including deflection-rotation
cross correlation (solid).

FIG. 2 (color online). We artificially set CΩΩ
J ¼ Cφφ

J and
compare the efficiencies with which lensing converts E mode
into B mode by φ only (thin red dashed), by Ω without ψ
(blue dash-dotted), and by Ω with ψ (thick blue dashed).

FIG. 3 (color online). An unlensed polarization map with only
E modes (left) is deflected by a curl potential Ω, which is chosen
to give uniform ψ . The black circle illustrates that pixels are
shifted along the tangential direction (clockwise) of concentric
circles. Deflection generates a map with an apparent B-mode
component (middle), but the Bmodes are reduced once rotation is
included (right).
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have left out the contribution from rotation. Methods to
measure direction-dependent ψ [25], on the other hand,
cannot be directly applied to the case of lensing, because
correlation with Ω is not included. Reconstruction schemes
should combine the effects from Ω and that from ψ .
We emphasize that the leading lensing signature that is

pursued by current observations, i.e., that from linear scalar
perturbations due to large-scale structure, is unaffected
by our more general results. Still, beyond linear order in
perturbation theory, weak lensing by large-scale structure
is expected to rotate the polarization. Large-scale vorticity
flow can contribute a signal by generating a vector mode in
the metric. Moreover, rotation can appear at second order
in potential perturbations, since it is related to the image
rotation which arises from lens-lens coupling [13,28–30].
Rotation will thus need to be included when the weak
lensing of polarization has to be studied at second order in
scalar perturbations.
Our discussion may apply to other observations in

cosmology and astrophysics, e.g., future 21-cm surveys
or strongly lensed quasars, where lensing distortions to the
observed photon polarization might need to be studied.
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