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We show by using statistically rigorous arguments that the technique of weak value amplification does
not perform better than standard statistical techniques for the tasks of single parameter estimation and
signal detection. Specifically, we prove that postselection, a necessary ingredient for weak value
amplification, decreases estimation accuracy and, moreover, arranging for anomalously large weak values
is a suboptimal strategy. In doing so, we explicitly provide the optimal estimator, which in turn allows us to
identify the optimal experimental arrangement to be the one in which all outcomes have equal weak values
(all as small as possible) and the initial state of the meter is the maximal eigenvalue of the square of the
system observable. Finally, we give precise quantitative conditions for when weak measurement
(measurements without postselection or anomalously large weak values) can mitigate the effect of
uncharacterized technical noise in estimation.
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Weak measurements (also called gentle or fuzzy mea-
surements), where little information is gained about the
system at the benefit of little disturbance to that system, are
an old [1,2] and well-studied concept [3] that has enabled
technologies such as quantum feedback control [4]. The
distinct concept of a weak value, often defined in con-
junction with weak measurement, was introduced in 1988
by Aharonov, Albert, and Vaidman [5]. Weak values are
said to have practical uses such as increased sensitivity for
the purpose of signal detection or quantum metrology (see
an introductory exposition and references in [6]). The
technique itself is called weak value amplification.
An important distinction must be made between two

tasks often taken to be equivalent: (i) increasing detection
sensitivity through a shift in the meter position and
(ii) increasing the accuracy in estimating a parameter which
evokes this shift. Let us call these two the tasks of “detect”
and “estimate,” respectively. These two tasks, being stat-
istical in nature, are much older than quantum theory itself.
The task detect is equivalent to hypothesis testing, while
estimate is equivalent to parameter estimation [7]. We note
that weak value amplification (WVA, herein) has been
motivated by its potential to improve in estimate, while its
practical implementation has been claimed to aid in the task
of detect (see, for example, Hosten and Kwiat [8]).
Previously it has been shown by Knee et al. [9], for a

particular two-qubit ancilla coupled estimation problem,
that estimation accuracy using weak values is at best equal
to the standard estimation technique (using all the data) and
typically worse than the standard technique once the
postselection probability is correctly accounted. Knee et al.
also show that decoherence severely penalizes the weak
measurement technique. Recently, Tanaka and Yamamoto
[10], in a very general ancilla coupled measurement setting,
concluded that weak value amplification is “useless” for

enhancing estimation accuracy once the postselection
probability is correctly accounted in the limit of infinite
measurements. This conclusion is slightly more general
than that obtained by Zhu et al. [11], who find the same
asymptotic results by using the signal-to-noise ratio. It has
been claimed that the above results are known or expected
[6] and the true advantage of WVA is the suppression of
technical noise. However, for particular models of technical
noise, Knee and Gauger [12] have shown that WVA
remains unhelpful.
In this Letter, we show that WVA is suboptimal both

asymptotically (equivalent to previous results) and for any
amount of finite data. Moreover, whereas previous analyses
dealt only with the task estimate, here we show that WVA is
also not tenable for either task: estimate or detect. That is,
there is no sense in which WVA provides an “amplifica-
tion” for quantum metrology [13]. These conclusions hold
true even in the presence of Gaussian technical noise with
an arbitrary correlation function. Moreover, we give the
precise conditions, and general sense, under which the
“weakness” of the measurement can mitigate the technical
noise. Finally, in deriving the above results, we provide
both the optimal experimental arrangement and estimator
for the weak measurement scheme, which does not involve
throwing out data or invoking the notion of weak values.
Aside from the obvious practical implications, our results
clearly illustrate the distinction between weak measurement
and weak values.
We begin by examining the prototypical example where

weak value amplification has been proposed to yield
enormous improvements in estimation of small parameters.
Let us suppose system B is a meter with canonical
coordinates ½Q;P� ¼ i and the interaction Hamiltonian is
H ¼ O ⊗ P, where O is an observable on system A. The
initial wave function ΦðqÞ of the meter is a zero-mean
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Gaussian with variance σ2 much larger than the eigenvalue
range of O. We assume the interaction parameter is small
and expand UðxÞ ¼ expð−ixHÞ about x ¼ 0, to first order,
to obtain an approximation to the joint probability of
obtaining outcome jfi in a measurement of O and jqi in
a measurement of the meter position. The likelihood
function is [5]

Prðf; qjxÞ ¼ PrðfÞ Prðqjf; xÞ
¼ jhfjiij2jΦðq − xOwðfÞÞj2; (1)

where

OwðfÞ ¼
hfjOjii
hfjii (2)

is the weak value (assuming it is real). By postselecting on
outcome f ¼ ✓, an anomalously large shift in the average
meter position can be observed. That is, Ow can be made
large by a clever choice of h✓jii ≈ 0. In the weak value
amplification literature, it is suggested that this large shift
can be used to “amplify” (read: improve) the sensitivity or
efficiency of the statistical tasks estimate and detect.
To illustrate our general results, we explore an example

related to the analysis of Feizpour, Xing, and Steinberg [14]
(FXS, herein). FXS consider additional technical noise on
the meter variable (qj) such that the jth measured signal is

rj ¼ qj þ ηj; (3)

where η is a noise process characterized by its mean
hηji ¼ 0 and correlation hηjηki. It is assumed that there
is no initial quantum mechanical noise on the meter such
that Eq. (3) simplifies to rj ¼ xþ ηj.
Following FXS, we will compare the weak value (post-

selected) signal-to-noise ratio (SNR) to the SNR when
the measurement results of system A are ignored. Since the
extra noise is zero mean, the “signal” is defined as the
average shift in the meter position over many measure-
ments:

x̂ ¼ 1

N

XN
k¼1

rj: (4)

In statistics, this object is called an estimator, which we
denote by the hat. Because E½x̂ − x� ¼ 0, the estimator is
unbiased. Assuming that hηjηki ¼ η̄2, which corresponds
to the long correlation time regime, the variance of the
estimator is

1

N2

X
j;k¼1

hηjηki ¼ η̄2: (5)

The SNR was defined by FXS as the mean of the estimator
(the signal) over its standard deviation

SNR ¼ x
η̄
: (6)

This is the SNR of the meter variable ignoring the outcomes
of the measurement on system A. Now FXS consider
postselection with success probability p and amplified
meter position Ow which can be made arbitrarily large
(in theory—although practically there maybe limitations).
The variance in this case remains fixed at η̄2, but the
average meter position is now Owx. Thus the signal-to-
noise ratio increases to

SNR ¼ Owx
η̄

: (7)

We are supposed to conclude that the SNR can be amplified
by an arbitrary amount given by the weak value.
The SNR is intended to be a figure of merit for the

purpose of either estimating the value of x (estimate) or, at
least, detecting its presence (detect). However, both tasks
are statistical in nature, and, before commenting further on
SNR, we appeal to well-established statistical techniques
which are indeed used in most areas of experimental
physics. For the estimate problem we use the figure of
merit mean squared error, while for detect we measure
performance by the probability of correctly identifying the
presence of the interaction. These are the uncontroversially
accepted figures of merit for the problems which WVA is
claimed to be beneficial.
We begin with estimate. The following equations and

calculations are simplified by using a vector notation [15].
In particular, since each outcome of the A system meas-
urement, labeled f, is associated with its own weak value
via Eq. (2), we group those into a vector of weak values
labeledOwðf Þ. Equation (3) becomes r ¼ qþ η, where η is
a random variable with a Gaussian (or “normal”) distribu-
tion with zero mean and covariance matrix K. This is
denoted η ∼ Nð0;KÞ.
TheWVAapproach is to take all the data (r, f ) and consider

the distribution of the meter variable conditioned on the
outcomes of the A system: Prðrjf ; xÞ. A complete statistical
analysis, however, utilizes the joint likelihood function of all
data: Prðr; f jxÞ. To obtain this, we marginalize over q:

Prðr; f jxÞ ¼
Z

PrðrjqÞ Prðq; f jxÞdq: (8)

Via the vector generalization of Eq. (1), we have
Prðq; f jxÞ ¼ Prðf Þ Prðqjf ; xÞ, and both functions left in the
integrand are Gaussian; thus, the integral itself is also
Gaussian. In vector notation,

Prðr; f jxÞ ∼ Prð f ÞNðxOwð f Þ;K þ σ21Þ; (9)

where 1 is the identity matrix and comes from the original
(uncorrelated) statistical noise inherent in the quantum
measurement.
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From the well-known Cramer-Rao bound, the best
estimator—with the minimum mean squared error—is
the maximum likelihood estimator (MLE). Some matrix
calculus leads to

x̂MLE ¼ Owðf ÞTðK þ σ21Þ−1r
Owðf ÞTðK þ σ21Þ−1Owðf Þ

: (10)

The variance in the distribution of this estimator gives the
minimum mean squared error performance. Since r is
normally distributed, the estimator is also normally dis-
tributed (since it is a linear transformation of r). Thus,

x̂MLE ∼ Nðx; ½Owðf ÞTðK þ σ21Þ−1Owðf Þ�−1Þ: (11)

The variance of the estimator can be easily read off:

Var½x̂MLE� ¼
1

Owðf ÞTðK þ σ21Þ−1Owðf Þ
: (12)

At this point it is worth discussing the role of K. It could
be argued that precise knowledge of the covariance matrix
of the technical noise is impractical. One defense says that a
device with serious metrological applications will have
well-characterized noise properties [16]. We can say some-
thing more interesting for the present scenario. Consider
the Taylor series expansion of ðK þ σ21Þ−1 about σ2 ≫ 1:

1

σ2

�
1þ K

σ2

�−1
¼ 1

σ2

�
1 − K

σ2
þO

�
1

σ4

��
: (13)

With this, we can expand expand the variance of the “gold-
standard” MLE in Eq. (12):

Var½x̂MLE�¼
σ2

jjOwðf Þjj2
þOwðf ÞTKOwðf Þ

jjOwðf Þjj4
þO

�
1

σ2

�
: (14)

Next, we show that ignoring the noise covariance matrix
altogether results in an estimator that matches the gold
standard to order σ−2. Taylor expanding the MLE in
Eq. (10) to first order results in what we call the simplified
maximum likelihood estimator (SMLE):

x̂SMLE ¼ Owðf ÞTr
jjOwðf Þjj2

: (15)

The variance of this estimator is

Varðx̂SMLEÞ ¼
Owðf ÞTðK þ σ21ÞOwðf Þ

jjOwðf Þjj4
(16)

¼ σ2

jjOwðf Þjj2
þOwðf ÞTKOwðf Þ

jjOwðf Þjj4
; (17)

which matches the variance in Eq. (14) to order σ−2, as
promised. Let us reiterate: The SMLE estimator does not
require knowledge K and is unbiased and near optimal
provided σ2 ≫ jjKjj. This gives a precise and quantitative
meaning to the notion that weak measurement (without
postselection and anomalous weak values) can mitigate the
effect of technical noise for large enough σ2.
Now the WVA technique amounts to choosing a par-

ticular outcome f ¼ ✓ of the A system and keeping only
those results of the meter system whose indices correspond
to that outcome: j ∈ ✓ means fj ¼ ✓. Then the WVA
estimator can be written as

x̂WVA ¼
P

j∈✓rj
N✓Owð✓Þ ; (18)

where N✓ ≤ N is the number of times the outcome
✓ was observed. This is an unbiased estimator with
variance

Varðx̂WVAÞ ¼
σ2

N✓Owð✓Þ2 þOð1Þ: (19)

Now, since clearly a sum of positive terms is greater than
the sum of a subset of them,

jjOwðf Þjj2 ¼
XN
j¼1

OwðfjÞ2 ≥ N✓Owð✓Þ2 (20)

and

Var½x̂MLE� ≤ Var½x̂SMLE� ≤ Var½x̂WVA�; (21)

which means that the WVA estimator has the worst
squared error (least informative) among the techniques
considered here. As Eq. (21) is an inequality, it can be
saturated, which was first pointed out by Knee et al. [9].
Let us return the SNR. Since each of these techniques

result in an unbiased estimator, the signal—defined as the
mean of the estimator—is x. To first order we have

SNRMLE ¼ xjjOwðf Þjj2
σ2

≥
xN✓Owð✓Þ2

σ2
¼ SNRWVA:

(22)

In previous analyses, the postselected SNR was compared
to the case where all data from system A were ignored.
Equation (22) shows that we can do even better by
considering all data. That is, we have proven that the
postselection portion of the WVA protocol is generally
harmful for estimation. However, it could be that the weak
value (or sum thereof) provides an amplification, since the
variance is reduced (and SNR increased) by jjOwðf Þjj2.
Next, we show that this is false; that is, even if we take
account of all data, arranging for some outcomes to have
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anomalously large weak values can only increase the
variance of the estimator.
In the variance of the MLE and the SNR, the term

jjOwðf Þjj2 is a random variable. This is because we
computed the variance of the estimator with respect to
the distribution of Prðrjf ; xÞ. Now we derive the variance
with respect to the joint distribution Prðr; f jxÞ. To do this,
we make use of the law of total variance: Varr;f jx½x̂� ¼
Ef ½Varrjf ;x½x̂�� þ Varf ½Erjf ;x½x̂��. Since all estimators consid-
ered above are unbiased, the second term is zero. The first
term is nontrivial, however, as it requires the expectation of
a ratio of random variables. To evaluate this, we use again
the Taylor series expansion, this time about the variable
N ≫ 1. Still assuming σ2 ≫ jjKjj, we expand the expect-
ation of only the first term in Eq. (14). The total variance is
then [17]

Var½x̂ðSÞMLE� ¼
σ2

E½jjOwðf Þjj2�
þ σ2Var½jjOwðf Þjj2�

E½jjOwðf Þjj2�3
; (23)

to order Oð1=N2Þ. Now, jjOwðf Þjj2 ¼
P

N
j¼1OwðfjÞ2, and

straightforward calculation reveals

E½jjOwðf Þjj2� ¼ NhijO2jii; (24)

Var½jjOwðf Þjj2� ¼ N
Xd
k¼1

pkð1 − pkÞOwðfkÞ4; (25)

where d is the number of distinct outcomes which occur
with probability pk. That is, the expected reduction in
variance is independent of weak value. In fact, we see
explicitly that the optimal estimation strategy is to choose
the initial state of the system A to be the eigenvector of O2

with the largest eigenvalue. Plugging these back into
Eq. (23) and dropping the higher order terms gives

Var½x̂ðSÞMLE� ¼
1

NhijO2jii þ
P

d
k¼1 pkð1 − pkÞOwðfkÞ4

N2hijO2jii3 :

(26)

Thus, the lowest variance is obtained by choosing the initial
state jii to maximize hijO2jii and minimizing the second
term. Here is the key point: The second term can be forced
to zero by taking any of pk ¼ 1. In the weak measurement
case, this implies that the final measurement basis contains
the state jfi ¼ jii. This will be the only outcome observed
and has the weak value OwðfÞ ¼ hijOjii. These deliber-
ations show that considering “anomalously large” weak
values strictly increases the variance of even the optimal
estimator—and is hence detrimental for the task estimate.
Next we show that the same conclusions are true for the
task detect.

The task detect is equivalent to the statistical problem of
hypothesis testing. Let us consider the “null hypothesis”
that no interaction is present: x ¼ 0. Standard statistical
hypothesis testing would have us compute a “test statistic.”
In many cases, the most powerful is the likelihood ratio test
statistic [18]:

D ¼ −2 log

�
Prðr; f jx ¼ 0Þ
maxx Prðr; f jxÞ

�
: (27)

For brevity, we define Q ¼ ðK þ σ21Þ−1, so that
Prðrjf ; xÞ ∼ NðxOwðf Þ;Q−1Þ, and, in particular,
Prðrjf ; x ¼ 0Þ ∼ Nð0;Q−1Þ. Then, the log-likelihood ratio
becomes

D ¼ rTQr − ½r − xOwðf Þ�TQ½r − xOwðf Þ�: (28)

According to Wilks’s theorem [19], under the null
hypothesis the distribution of D is asymptotically χ2N :
the well-known χ-squared distribution with N degrees of
freedom. This fact, or a direct calculation analogous to one
below, yields Erjf ;x¼0½D� ¼ N. In other words, under the
null hypothesis—that is, assuming no interaction is present
—the distribution ofD is a χ-squared random variable, and,
in particular, its expected value is N. Note that, in practice,
this is all we need from the theory; we simply take the data
and compute D, and, if it is sufficiently larger than N, we
reject the null hypothesis with some degree of confidence.
But we can in fact do more by designing experiments

which are more powerful in that they give larger values of
D when an interaction is present. To this end, we compute
the expected value of D when an interaction is present. A
lengthy exercise in matrix algebra reveals the expectation
value of the two terms of D gives

Erjf ;x½rTQr� ¼ N þ x2Owðf ÞTQOwðf Þ; (29)

Erjf ;xf½r − xOwðf Þ�TQ½r − xOwðf Þ�g ¼ 0. (30)

Summing these two, we have

Erjf ;x½D� ¼ N þ x2Owðf ÞTQOwðf Þ. (31)

We have already encountered the term Owðf ÞTQOwðf Þ ¼
Owðf ÞTðK þ σ21Þ−1Owðf Þ above. The Taylor expansion
shows

Erjf ;x½D� ¼ N þ x2

σ2
jjOwðf Þjj2 þO

�
1

σ4

�
: (32)

From Eq. (20), it is clear that the postselection present in
WVA will only reduce this expectation, and hence the test
has less statistical power.
Analogous to the case for estimate, now we show that

larger weak values have less statistical power. Consider
using all the data to calculate the test statistic D averaged
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over the outcomes r and f . Using the law of total expect-
ation, we have Er;f jx½D� ¼ Ef ½Erjf ;x½D��; ignoring higher
order terms, this gives

Er; f jx½D� ¼ N

�
1þ x2hijO2jii

σ2

�
; (33)

where we have used (32) and the fact that
Ef ½jjOwðf Þjj2� ¼ NhijO2jii. Thus, if an interaction of
strength x is present, the test statistic will on average
exceed our expectation of Erjx¼0½D� ¼ N under the null
hypothesis by a factor of 1þ x2hijO2jii=σ2. Again we see
that the weak value amplification technique is suboptimal;
the optimal experiment is to have an input state jii which
maximizes the expected value of jjOwðf Þjj2, which occurs
when jii is the eigenvector corresponding to the largest
eigenvalue of O. As in the case of estimate, the optimal
approach to detect features no anomalously large weak
values.
In summary, we have found that postselection in general

can only hinder the ability to perform the task of either detect
or estimate. This implies that the standard technique of weak
value amplification cannot provide an improvement for
quantum metrology. Moreover, even if all data are proc-
essed, it is more advantageous to choose the experimental
parameters such that the corresponding weak values are
small. In other words, the typical approach of using
anomalously large weak values is less preferable. These
negative results are counterbalanced by the following
positive ones. We have identified the optimal input and
output states for the systemmeasurement; it is best to choose
the input state and output state jii to be the eigenvector ofO2

with the maximal eigenvalue. We have shown that technical
noise can overcome using weak measurements (without
postselection or anomalous weak values) by choosing a
sufficiently broad meter wave function.
Although the results have been presented by way of an

example, they are, as we show in the Supplemental Material
[20], in fact, fully general: Postselection cannot aid in
detect or estimate for any interaction parameter. Recently,
we have generalized the result further to any single
parameter quantum metrology problem [21] regardless of
how it is imparted on the system.
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