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We study the thermodynamics of Bose-Einstein condensation in a weakly interacting quasihomogeneous
atomic gas, prepared in an optical-box trap. We characterize the critical point for condensation and observe
saturation of the thermal component in a partially condensed cloud, in agreement with Einstein’s textbook
picture of a purely statistical phase transition. Finally, we observe the quantum Joule-Thomson effect,
namely isoenthalpic cooling of an (essentially) ideal gas. In our experiments this cooling occurs sponta-
neously, due to energy-independent collisions with the background gas in the vacuum chamber. We extract
a Joule-Thomson coefficient μJT > 109 K=bar, about 10 orders of magnitude larger than observed in
classical gases.
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Ultracold atomic gases provide textbooklike demonstra-
tions of basic quantum-statistical phenomena, such as
Bose-Einstein condensation [1] and Fermi pressure [2],
and allow controllable studies of open problems in the
physics of strongly correlated interacting systems [3].
However, they are traditionally produced in harmonic traps,
which makes them spatially inhomogeneous and thus dif-
ferent both from other correlated systems, that they often
aim to emulate, and from textbook models. This difference
can often be addressed by using the local density approxi-
mation (LDA) and is in some cases even beneficial [4–10].
However, spatial inhomogeneity is also often problematic.
Integrating over the varying density can smear or even
qualitatively change experimental signatures (see, e.g.,
[11–15]). Moreover, LDA breaks down close to phase tran-
sitions, where the correlation length diverges [16].
Recently, a Bose-Einstein condensate (BEC) of atoms in
an essentially uniform potential was achieved [17], opening
new possibilities for studies of both quantum-statistical and
interaction effects in many-body systems.
In this Letter, we explore the thermodynamics of a

weakly interacting quasihomogeneous Bose gas, prepared
in an optical-box trap (see Fig. 1). We characterize the criti-
cal point for condensation and demonstrate two purely
quantum-statistical phenomena that are, despite weak inter-
actions, obscured in harmonically trapped gases. First, we
observe saturation of the thermal component in a partially
condensed gas, in agreement with Einstein’s textbook pic-
ture of condensation as a purely statistical phase transition.
Second, we observe and quantitatively explain cooling of
partially condensed clouds through isoenthalpic rarefac-
tion, driven by collisions with the background gas in the
vacuum chamber. This phenomenon is the quantum version
of the Joule-Thomson (JT) effect, exploited in thermal
machines such as refrigerators and heat pumps. In the
classical JT process, isoenthalpic cooling occurs only
due to interactions, whereas a quantum Bose gas is

expected to show it even in their absence. This phenome-
non was predicted as early as 1937 [18] and was at the time
proposed as a way to experimentally observe the quantum
statistics obeyed by a gas, the effect being opposite for fer-
mions (see also [19]). However, to our knowledge, JT cool-
ing has never before been experimentally observed in the
regime where quantum-statistical effects dominate over the
interaction ones. Outside the realm of ultracold atomic
gases, the quantum JT effect is many orders of magnitude
smaller [18], whereas in ultracold-atom experiments it is
usually suppressed because of harmonic trapping and the
resulting nonsaturation of the thermal component.
Our experimental setup is described in detail in

Refs. [17,20]. We produce BECs of 87Rb atoms in the qua-
siuniform potential of the optical-box trap depicted in
Fig. 1. The repulsive walls of the cylindrically shaped
box are created by one tubelike and two sheetlike
532-nm laser beams, and we use a magnetic field gradient
to cancel the linear gravitational potential. The box trap is
loaded from a cloud precooled to T ∼ 100 nK in a har-
monic trap. Further cooling is achieved by forced evapora-
tion in the box potential.

FIG. 1 (color online). Quasihomogeneous Bose gas in an
optical-box trap. We show a schematic of our cylindrically shaped
trap, formed by intersecting one tubelike and two sheetlike green
laser beams, and an in situ absorption image of the atomic cloud.
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In a box trap, the BEC spreads over the same volume as
the thermal cloud, making the condensate density and the
total interaction energy much lower than in harmonically
trapped gases with similar atom numbers, temperatures,
and s-wave scattering length (a ≈ 5 nm for 87Rb). In all
our measurements, with condensed fractions up to 40%,
the interaction energy is ≲10% of the thermal energy.
We therefore expect the thermodynamics of our clouds
to be well described by ideal-gas theory.
We first study the critical atom number for condensation,

NcðTÞ, which also allows us to quantitatively characterize
our trap (see Fig. 2). Because of diffraction effects, the
optical trap walls cannot be infinitely steep. The resulting
small deviation from a perfectly uniform box can to
leading order be modeled by an effective high-power-
law potential, ∝ rn [17]. Defining α ¼ 3=2þ 3=n, the ther-
mal momentum distribution is given by the polylog
function gα−3=2, the density of states is ρðεÞ ∝ εα−1, and
we expect [21]

Nc ∝ Tα: (1)

To measure T and the number of thermal (N0) and con-
densed (N0) atoms, we image clouds after 50–70 ms of
time-of-flight (ToF) expansion from the trap. We vary T
by changing the evaporation sequence, and the total atom
number N by changing the initial loading of the trap. After
forced evaporation we always raise the trap depth to
U0 ∼ kB × 0.4 μK, where evaporation is negligible, and
hold the gas for another 1 s before ToF. We identify the
critical point with the appearance of small BECs, with
N0 ≲ 5000 [22].
Using Eq. (1) to determine the α value for our trap

requires some care, because extracting NcðTÞ from ToF
images relies on a polylog fitting function that itself

depends on α. To ensure our analysis is self-consistent,
we proceed as follows: We first fit all images using various
α values, αf, and get a separate NcðTÞ curve for each αf.
Then, fitting Nc ∝ Tαc to these curves as per Eq. (1), we get
αc for each αf. Finally, requiring αc ¼ αf for self-
consistency, we get 1.6≲ α ≲ 1.7; see the main panel
and bottom inset in Fig. 2 [23]. For the data analysis in
Figs. 3 and 4 below, we fix αf ¼ 1.65, corresponding
to n ¼ 20.
In a perfectly uniform potential, Nc ∝ VT3=2, where V is

the box volume. A small deviation of α from 3=2 corre-
sponds to a slight increase of the effective trapping volume
with temperature, V ∝ Tα−3=2, due to the noninfinite steep-
ness of the trap walls. From in situ images (as in Fig. 1), we
measure a ð20� 10Þ% increase in V between T ¼ 25 and
50 nK, which is consistent with our α.
Over the whole temperature range in Fig. 2, for the criti-

cal phase space density we get ρc ¼ Ncλ
3=V ¼ 2.0� 0.2,

where λ ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=mkBT
p

is the thermal wavelength and m
is the atomic mass. Theoretically, we expect ρc ≈ 2.4,
including a finite-size correction [24] to the thermody-
namic-limit ρc ≈ 2.612 [21]. This small discrepancy is
within our systematic uncertainties of 10% in Nc and
20% in V [25,26].
While in the above we were careful to characterize the

small deviation of our trap from an ideal box, we note that
simply assuming a perfectly homogeneous gas of constant
volume leads to very small errors. This is shown in the top
inset in Fig. 2, where we fix both αf and αc to 3=2 and the
fit of NcðTÞ is still very good.
We now turn to the study of partially condensed clouds.

In Fig. 3, we show the evolution of the thermal atom num-
ber as N is increased beyond Nc and a BEC forms. In
Einstein’s ideal-gas picture of condensation, N0 saturates
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FIG. 2 (color online). Critical point for condensation. A power-
law fit, Nc ∝ Tαc , gives αc ≈ αf ¼ 1.65 (see the text). Bottom
inset: Within errors, αc ¼ αf (solid line) is satisfied for
1.6≲ αf ≲ 1.7. Top inset: Comparison with theory of a perfectly
homogeneous gas, with fixed αc ¼ αf ¼ 3=2.
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FIG. 3 (color online). Saturation of the thermal component in a
partially condensed gas. In the box trap the gas follows the ideal-
gas prediction N0 ¼ Nc, whereas in the harmonic trap the thermal
component is strongly nonsaturated. The dashed red line shows
the theoretical prediction for the harmonic trap. (For the har-
monic-trap data, T ≈ 110 nK and Nc ≈ 65 × 103.)
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at the critical point and can never exceed Nc. In a harmoni-
cally trapped gas, this picture is strongly violated even for
weak interactions, such as in 87Rb, and can be recovered
only by extrapolating to the strictly noninteracting limit
[14], where direct measurements cannot be performed
due to the absence of thermal equilibrium [28]. This strong
deviation from ideal-gas behavior arises due to an interplay
of interactions and the nonuniformity of the gas, and can be
explained by using a mean-field theory that does not
require violation of the saturation picture at the level of
the local thermal density [14,29].
In our experiments, N0 is essentially equivalent to the

thermal density. In Fig. 3, we see that in this case N0 indeed
remains constant as the condensed fraction N0=N is
increased at constant temperature (45� 1 nK) [30]. For
comparison, we also show analogous measurements for
the harmonic trap from which our box trap is loaded.
Here the nonsaturation of N0 is prominent and agrees with
the prediction based on Refs. [14,29], without any free
parameters.
Finally, we study the free long-time evolution of a gas

held in the box trap and observe the quantum Joule-
Thomson effect (Fig. 4). We prepare clouds at Ti ≈
45 nK in a trap of depth U0, where evaporation is negli-
gible. As the gas is held in the trap, atoms are slowly
removed from the cloud, with an exponential time scale
τ ≈ 10 s, by collisions with the background gas in the
vacuum chamber. Because of low atomic density
(<5 × 1012 cm−3), the three-body recombination rate is
negligible [34]. As N decays, the elastic collision rate
(among the trapped atoms) remains sufficiently high for
the gas to continuously reequilibrate on a time scale τeq ≲
2 s ≪ τ [35].

Crucially, collisions with the background gas are inde-
pendent of the energy of the trapped atoms, so the average
energy per trapped particle, E=N, remains constant. Within
the ideal-gas approximation, pressure is simply given by
the energy density, so enthalpy H is simply proportional
to E, and the specific enthalpy h ¼ H=N is a conserved
quantity. The decay of the cloud is thus equivalent to
the Joule-Thomson isoenthalpic rarefaction, as depicted
in Fig. 4(a). For simplicity, here we illustrate free Joule
expansion into vacuum; in the JT process rarefaction is
driven by throttling, but for an ideal gas both processes
are isoenthalpic.
In a classical ideal gas, h depends only on T, so temper-

ature cannot change in an isoenthalpic process. This is,
however, not true for a quantum degenerate ideal gas
[18,21]. In a partially condensed cloud, only thermal
atoms contribute to the total energy, so for a saturated
gas E ∝ N0T ¼ NcT. More precisely, E ¼ α½ζðαþ 1Þ=
ζðαÞ�NckBT [21], where ζ is the Riemann zeta function.
From Eq. (1), keeping E=N constant implies cooling
according to

T ∝ N1=ðαþ1Þ: (2)

The microscopic origin of this cooling is qualitatively illus-
trated in Fig. 4(b). Removal of any thermal atom requires a
zero-energy particle to come out of the BEC in order
to maintain the saturation of the thermal component.
Energy conservation then requires simultaneous redistrib-
ution of atoms between energy levels. The net cooling is
seen in the change of the relative populations of the excited
states. Note that direct removal of BEC atoms does not
change the temperature and also that in this simplified
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FIG. 4 (color online). Quantum Joule-Thomson effect. (a) Isoenthalpic rarefaction. In a conventional JT process V is increased,
whereas in our experiments N is reduced, but for an ideal gas both processes conserve specific enthalpy and are thermodynamically
equivalent. (b) Microscopic origin of JT cooling in a saturated quantum gas. Removal of a thermal atom requires a zero-energy particle
to come out of the BEC in order to maintain N0 ¼ Nc, while energy conservation requires redistribution of atoms between energy levels.
Cooling is seen in the change of the relative populations of the excited states. In this cartoon we neglect the fact that Nc also slowly
decreases. (c) Measurements with a partially condensed and a thermal cloud. The solid and dashed blue lines are predictions of Eq. (2)
with α ¼ 1.65 and α ¼ 3=2, respectively. The dotted red line is a numerical calculation (see the text).
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cartoon we neglect the fact that NcðTÞ gradually decreases
as T drops.
In Fig. 4(c), we show the evolution of T with

decaying N, with both quantities scaled to their initial
values. We show data for a partially condensed gas,
with Ni ≈ 1.7NcðTiÞ, and a thermal cloud, with
Ni ≈ 0.6NcðTiÞ. Note that in both cases we measure down
to approximately the same final N value, ≈0.3NcðTiÞ. At
this point, N0 in the initially condensed sample vanishes,
and also below this N our temperature fits become less
reliable.
In the (partially) condensed sample we observe a drop

in T by a factor of 2, i.e., by ≈22 nK. Meanwhile, the
interaction energy per particle is always smaller than
ð8πℏ2a=mÞNi=V [21], corresponding to < 4 nK. The
change in T therefore must predominantly be a purely
quantum-statistical, rather than an interaction, effect [36].
Indeed, Eq. (2) fits the data very well. We show predic-

tions for α ¼ 1.65 (solid blue line) and α ¼ 3=2 (dashed
blue line). The two are almost indistinguishable, reaffirm-
ing that the behavior of our clouds is very close to that of a
perfectly homogeneous gas.
Within the constant-V approximation, our measurements

are directly related to the Joule-Thomson coefficient
μJT ¼ ð∂T=∂PÞh, according to μJT ¼ Að∂T=∂NÞh, with
constant A ¼ ð3=2ÞVN=E. More conveniently expressed,
the dashed blue line in Fig. 4(c) corresponds to [21]

μJT ¼ 2

5ζð5=2Þ
λ3

kB
: (3)

At our lowest temperatures, μJT ≈ 4 × 109 K=bar, about 10
orders of magnitude larger than observed in classical gases.
To understand the origins of this enhancement, on

dimensional grounds we write μJT ¼ cJTT=P, so cJT is
dimensionless and T=P ∼ 1=ðn0kBÞ, where n0 is the thermal
particle density. The value of cJT depends on the equation
of state. In the ideal gas, cJT ¼ 0 in the classical limit, while
cJT ¼ 1=ðαþ 1Þ for a saturated Bose gas [21]. Interaction
corrections to cJT are essentially given by the ratio of inter-
action and thermal energy. In our case these small correc-
tions are unimportant and cJT ≈ 2=5, but for a classical gas
they are the only origin of the JT effect and typically cJT ≲
10−3 [37]. Another large enhancement of μJT comes from
the fact that in a saturated gas n0 ∼ λ−3 ∼ T3=2 decreases
with temperature, and our lowest n0 is ∼107 times smaller
than at ambient temperature and pressure. Combining the
differences in cJT and 1=n0, we recover the ∼1010-fold
increase in μJT compared to classical gases. It is also inter-
esting to note that μJT in Eq. (3) explicitly vanishes in the
limit ℏ → 0, reiterating that this is a purely quantum effect.
Compared to the partially condensed gas, in the thermal

sample T remains almost constant, but we do discern a
slight cooling effect. This is indeed expected for a degen-
erate noncondensed gas [18], with a chemical potential

μ≳ −kBT. Degeneracy preferentially enhances occupation
of low energy states, with ε < jμj (e.g., momentum distri-
bution is more “peaky” than a Gaussian [17,21]), so E=N is
lower than the classical value αkBT. Between the classical
limit and the critical point, η≡ E=ðαNkBTÞ decreases from
1 to ζðαþ 1Þ=ζðαÞ [21]. Hence, if E=N is kept constant
while η grows as the gas becomes less degenerate due to
N decay, T must slightly decrease. The dotted red line
in Fig. 4(c) shows a numerical calculation of this effect
for our Ni=NcðTiÞ and fits the data very well.
Similar theoretical analysis applies to an ideal harmoni-

cally trapped gas, but in that case α ¼ 3, implying weaker
cooling in both condensed clouds and degenerate thermal
samples; see Eq. (2) and note that ζð4Þ=ζð3Þ ≈ 0.9, as
compared to ζð5=2Þ=ζð3=2Þ ≈ 0.5. Moreover, in practice
harmonically trapped gases strongly deviate from this pic-
ture, because N0 is not saturated [14], much higher typical
BEC densities enhance the role of interactions, and three-
body recombination continuously increases E=N.
In conclusion, we have characterized the critical point

for Bose-Einstein condensation in a quasihomogeneous
weakly interacting gas and demonstrated two textbooklike
quantum-statistical phenomena that highlight qualitative
differences between uniform and harmonically trapped
degenerate gases. In future work, combining our methods
with stronger interactions (employing a Feshbach reso-
nance [38]) and flexible shaping of boxlike traps [39]
should allow further studies of novel thermomechanical
effects [40].

We thank Richard Fletcher and Jean Dalibard for critical
reading of the manuscript. This work was supported by
EPSRC (Grant No. EP/K003615/1), AFOSR, ARO, and
DARPA OLE. R. P. S. acknowledges support from the
Royal Society. N. N. acknowledges support from Trinity
College, Cambridge. T. F. S. and I. G. contributed equally
to this work.

*nn270@cam.ac.uk
[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E.

Wieman, and E. A. Cornell, Science 269, 198 (1995).
[2] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B.

Partridge, and R. G. Hulet, Science 291, 2570 (2001).
[3] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,

885 (2008).
[4] T.-L. Ho and Q. Zhou, Nat. Phys. 6, 131 (2010).
[5] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and

C. Salomon, Nature (London) 463, 1057 (2010).
[6] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon,

Science 328, 729 (2010).
[7] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Nature

(London) 470, 236 (2011).
[8] T. Yefsah, R. Desbuquois, L. Chomaz, K. J. Günter, and

J. Dalibard, Phys. Rev. Lett. 107, 130401 (2011).
[9] R. P. Smith, N. Tammuz, R. L. D. Campbell, M. Holzmann,

and Z. Hadzibabic, Phys. Rev. Lett. 107, 190403 (2011).

PRL 112, 040403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

040403-4

http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.1059318
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nphys1477
http://dx.doi.org/10.1038/nature08814
http://dx.doi.org/10.1126/science.1187582
http://dx.doi.org/10.1038/nature09722
http://dx.doi.org/10.1038/nature09722
http://dx.doi.org/10.1103/PhysRevLett.107.130401
http://dx.doi.org/10.1103/PhysRevLett.107.190403


[10] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M.W.
Zwierlein, Science 335, 563 (2012).

[11] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E.
Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett.
83, 2502 (1999).

[12] A. Perali, F. Palestini, P. Pieri, G. C. Strinati, J. T. Stewart,
J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett.
106, 060402 (2011).

[13] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini,
A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303
(2011).

[14] N. Tammuz, R. P. Smith, R. L. D. Campbell, S. Beattie,
S. Moulder, J. Dalibard, and Z. Hadzibabic, Phys. Rev. Lett.

106,230401)2011 ).
[15] R. P. Smith, R. L. D. Campbell, N. Tammuz, and

Z. Hadzibabic, Phys. Rev. Lett. 106, 250403 (2011).
[16] T. Donner, S. Ritter, T. Bourdel, A. Öttl, M. Köhl, and T.

Esslinger, Science 315, 1556 (2007).
[17] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith,

and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[18] D. S. Kothari and B. N. Srivasava, Nature (London) 140,

970 (1937).
[19] E. Timmermans, Phys. Rev. Lett. 87, 240403 (2001).
[20] I. Gotlibovych et al., arXiv:1212.4108.
[21] C. Pethick and H. Smith, Bose-Einstein Condensation in

Dilute Gases (Cambridge University Press, Cambridge,
England, 2002).

[22] Since N0 saturates for N > Nc, as shown in Fig. 3, associ-
ating the critical point with a small but nonzero N0 does not
introduce any errors.

[23] This conclusion is also compatible with an earlier estimate
based on analyzing just the shape of the thermal ToF profiles
at ∼100 nK [17].

[24] S. Grossmann and M. Holthaus, Z. Phys. B 97, 319 (1995).
[25] Our absolute atom-number calibration is obtained by meas-

uringNc in a harmonic trap [15]. The systematic uncertainty
in V is due to the inherent difficulties in imaging small and
dense clouds. Note that it corresponds to about one CCD
pixel uncertainty in the linear cloud size.

[26] Nc could also be slightly reduced by weak disorder in the
optical potential [27]. By directly imaging our trapping
beams, we assess the disorder in our trap to be up to a
few percent of U0.

[27] T. Bourdel, Phys. Rev. A 86, 063626 (2012).
[28] A. L. Gaunt, R. J. Fletcher, R. P. Smith, and Z. Hadzibabic,

Nat. Phys. 9, 271 (2013).
[29] R. P. Smith and Z. Hadzibabic, in Physics of Quantum

Fluids, Springer Series in Solid-State Sciences Vol. 177,
edited by A. Bramati and M. Modugno (Springer, Berlin,
2013), Chap. 16, pp. 341–359; see also arXiv:1203.2063.

[30] In an interacting gas the thermal phase-space density can
actually drop below ρc once the BEC forms [31–33], but
for our parameters this effect is very small.

[31] V. V. Goldman, I. F. Silvera, and A. J. Leggett, Phys. Rev. B
24, 2870 (1981).

[32] D. A. Huse and E. D. Siggia, J. Low Temp. Phys. 46, 137
(1982).

[33] A. Minguzzi, S. Conti, and M. P. Tosi, J. Phys. Condens.
Matter 9, L33 (1997).

[34] J. Söding, D. Guéry-Odelin, P. Desbiolles, F. Chevy,
H. Inamori, and J. Dalibard, Appl. Phys. B 69, 257
(1999).

[35] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and
C. E. Wieman, Phys. Rev. Lett. 70, 414 (1993).

[36] We estimate that the total change in T due to the change in
the interaction energy per particle could at most be ∼3 nK,
which is comparable to our experimental data scatter. More-
over, note that for a > 0 the drop in the interaction energy
should lead to slight heating rather than cooling of the gas.

[37] For a classical gas, cJT can be estimated, to within an order
of magnitude, by using the van der Waals approximation for
the equation of state.

[38] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[39] A. L. Gaunt and Z. Hadzibabic, Sci. Rep. 2, 721
(2012).

[40] D. J. Papoular, G. Ferrari, L. P. Pitaevskii, and S. Stringari,
Phys. Rev. Lett. 109, 084501 (2012).

PRL 112, 040403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 JANUARY 2014

040403-5

http://dx.doi.org/10.1126/science.1214987
http://dx.doi.org/10.1103/PhysRevLett.83.2502
http://dx.doi.org/10.1103/PhysRevLett.83.2502
http://dx.doi.org/10.1103/PhysRevLett.106.060402
http://dx.doi.org/10.1103/PhysRevLett.106.060402
http://dx.doi.org/10.1103/PhysRevLett.106.215303
http://dx.doi.org/10.1103/PhysRevLett.106.215303
http://dx.doi.org/10.1103/PhysRevLett.106.230401
http://dx.doi.org/10.1103/PhysRevLett.106.230401
http://dx.doi.org/10.1103/PhysRevLett.106.230401
http://dx.doi.org/10.1103/PhysRevLett.106.230401
http://dx.doi.org/10.1103/PhysRevLett.106.230401
http://dx.doi.org/10.1103/PhysRevLett.106.230401
http://dx.doi.org/10.1103/PhysRevLett.106.230401
http://dx.doi.org/10.1103/PhysRevLett.106.250403
http://dx.doi.org/10.1126/science.1138807
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.87.240403
http://arXiv.org/abs/1212.4108
http://dx.doi.org/10.1007/BF01307482
http://dx.doi.org/10.1103/PhysRevA.86.063626
http://dx.doi.org/10.1038/nphys2587
http://arXiv.org/abs/1203.2063
http://dx.doi.org/10.1103/PhysRevB.24.2870
http://dx.doi.org/10.1103/PhysRevB.24.2870
http://dx.doi.org/10.1007/BF00655448
http://dx.doi.org/10.1007/BF00655448
http://dx.doi.org/10.1088/0953-8984/9/5/001
http://dx.doi.org/10.1088/0953-8984/9/5/001
http://dx.doi.org/10.1007/s003400050805
http://dx.doi.org/10.1007/s003400050805
http://dx.doi.org/10.1103/PhysRevLett.70.414
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1038/srep00721
http://dx.doi.org/10.1038/srep00721
http://dx.doi.org/10.1103/PhysRevLett.109.084501

