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The stratum corneum, the outer layer of mammalian skin, provides a remarkable barrier to the external
environment, yet it has highly variable permeability properties where it actively mediates between inside
and out. On prolonged exposure to water, swelling of the corneocytes (skin cells composed of keratin
intermediate filaments) is the key process by which the stratum corneum controls permeability and
mechanics. As for many biological systems with intricate function, the mesoscale geometry is optimized to
provide functionality from basic physical principles. Here we show that a key mechanism of corneocyte
swelling is the interplay of mesoscale geometry and thermodynamics: given helical tubes with woven
geometry equivalent to the keratin intermediate filament arrangement, the balance of solvation free energy
and elasticity induces swelling of the system, importantly with complete reversibility. Our result
remarkably replicates macroscopic experimental data of native through to fully hydrated corneocytes.
This finding not only highlights the importance of patterns and morphology in nature but also gives
valuable insight into the functionality of skin.
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The skin is a large and complex organ whose numerous
layers perform distinct functions, from insulation and
temperature regulation to the sensation of touch. The outer
layer, the stratum corneum, provides a necessary and robust
boundary between conditions with distinct water concen-
trations inside and outside of the body [1]. Despite being
dead, i.e., without organelles and blood supply, this layer
plays an active role in the control of transepidermal water
loss through variation of cell porosity and water diffusion
properties [2], as well as providing a mechanical protection
against infections.
Corneocytes actively regulate various functions by

extreme, reversible swelling on prolonged exposure to
water [3–6]. The swelling of corneocytes is intriguing
for two key reasons: first, the expansion of corneocytes is
beyond what is permitted via elastic extension of the
component filaments (transformation from 35% keratin
packing fraction in native skin to 15% in hydrated skin
[4,5,7] is beyond a 150% extension of the intermediate
filament length), and second, the swelling process is
completely reversible over many repetitions.
Experimental imaging [8] suggests that the geometry of
the keratin intermediate filaments (IFs), the structural
components of the corneocytes, is the Σþ rod packing
[9] (geometric details are given in Fig. 1 and elsewhere
[10,11]). At the very least, it is ordered and cubic [9].
Assuming the Σþ geometric arrangement of the IFs, the
anomalous expansion of the corneocytes is permitted by the
“dilatant" property of the Σþ packing [7]. In dilatant
materials, the cooperative unwinding of curvilinear fila-
ments in a chiral arrangement lever off each other and cause
an expansion of the material beyond an isotropic stretching,

somewhat related to “Auxetic” materials with a negative
Poisson’s ratio [12]. The reversal back to the compact state
for symmetric dilatant materials is well defined and unique.
The dilatant behavior of the structure is a consequence of

a precisely ordered, chiral pattern for the keratin IFs, a
behavior unlikely for disordered networklike structures,
particularly not in a reversible fashion. It is likely this
pattern is formed via membrane templating [7,9], as the Σþ
arrangement is closely related to the Gyroid minimal
surface [11], a phase readily observed in lipid self-assembly
[13]. The macroscopic consequences of mesoscale pattern-
ing in vivo is intriguing, reminiscent of the Gyroid chitin
geometry in butterfly wings, which dictates macroscopic
photonic effects in the form of structural color [14–16]. By
exploring further these mesoscale geometric mechanisms
within the skin cells, an approach proven to be instructive
[17,18], we wish to provide a link between molecular scale
and macroscopic science.
In this Letter, we consider the effect of thermodynamics

on the system. We do this by examining the free energy
balance for the helical Σþ rod packing over a range of
configurations, from small to large unit cell size L, and
from straight components through to a large helical radius
R (Fig. 1). The keratin IFs are represented by helical tubes
with radius r ¼ 3.7 nm [19]. The helical tubes make two
helical turns diagonally across the unit cell, and we require
that the helical tubes never overlap. We alter the variables L
and R until the tubes just touch.
The calculation of the solvation free energy Fsol of

simple [20] and complex [21] solutes within the so-called
morphometric approach [22–24] is highly efficient and
accurate. Fsol (per unit cell) can be computed as a function
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of only four purely geometric quantities, characterizing the
shape of the solute, combined with thermodynamic pre-
factors that are independent of the specific geometry and
are determined by the solvent-solvent and solvent-solute
interactions:

Fsol ¼ pV þ γAþ κCþ κ̄X; (1)

where the geometrical measures of the filaments per unit
cell are the volume V, the surface area A, and the integrated
(over the surface) mean (C) and Gaussian (X) curvatures. It
is convenient to calculate these geometric measures for the
solvent accessible surface, i.e., the surface that is accessible
for the centers of solvent particles. Thus the radial thickness
r increases by Rs ¼ 1.4 Å, the radius of the solvent (s)
which we set to the radius of water, and the volume
excluded for centers of water can overlap, even if the
underlying helical tubes do not. The corresponding thermo-
dynamic coefficients in Eq. (1) re the solvent pressure p,
the planar wall surface tension γ, and the bending rigidities
κ and κ̄ [20]. While the curvature terms in Eq. (1) are
numerically smaller than the volume and especially the
surface term, they still are of conceptual importance. All of
the four terms in Eq. (1) depend on the definition of the
dividing surface, but the sum of all four does not [24]. By
focusing on the largest numerical contribution, the calcu-
lated solvation free energy would keep this definition
dependency.

The geometric quantities required for the computation of
Fsol can be calculated analytically, if the excluded volume
does not overlap. Where the filaments are very close to each
other, so that the excluded volume overlaps, the geometric
quantities are computed numerically.
The void space of the geometry is filled with a waterlike

solvent and gives rise to the grand potential per unit cell,
with unit cell volume Vcell, of Ω ¼ −pVcell þ Fsol. The
interaction between the helical tubes and the solvent is
hydrophilic, as for keratin IFs. The thermodynamic coef-
ficients p, γ, κ, and κ̄, which are independent of the solute
geometry, can be computed in a simple geometry via
classical density functional theory (DFT) [25]. We consider
the solvation free energy of a hydrophilic sphere with
radius R for which the geometric measures are particularly
simple. We calculate the solvation free energy for the
sphere in two steps. First, we fix the position of the sphere
and thereby make it into an external potential for the
solvent. In this external field we minimize the DFT in order
to obtain the inhomogeneous equilibrium density distribu-
tion ρðrÞ of the solvent (r is the radial distance from the
center of the solute sphere). In a second step we calculate
the total grand potential of the system Ω, where we make
use of the fact that in equilibrium the density functional
reduces to the grand potential Ω ¼ Ω½ρðrÞ� [25]. From
Ω we can extract the solvation free energy FsolðRÞ of
the sphere and fsurfðRÞ, the excess surface free energy per
area, via

FIG. 1 (color online). (Left) The periodic Σþ rod packing composed of straight rods. (Right upper) One unit cell of the structure with
slightly helical filaments. (Right lower) A single helix of the structure shown with the variable parameters: L is the unit cell edge length,
R the radius of the helix. The tube radial thickness r is 3.7 nm, the radius of keratin IFs.
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fsurfðRÞ ¼
1

A
½FsolðRÞ − pV� ¼ γ þ κ

C
A
þ κ̄

X
A
: (2)

For a sphere (and our definition of X) we obtain
C=A ¼ 1=R and X=A ¼ 1=ð4πR2Þ, so that the thermody-
namic coefficients γ, κ, and κ̄ can be extracted from a
quadratic fit in 1=R to numerical DFT calculations for
various values of the radius R. The solvent used in our
calculation is a square-well fluid that models the properties
of water, at these length scales, at ambient conditions [26].
While at microscopic length scales the structure of water is
strongly influenced by details of the water-water interac-
tion, for the mesoscale IF geometry here, a much simpler
square-well fluid can account for the solvation effects
appropriately. In Fig. 2 we show the results of our DFT
calculations (symbols) for solute sphere radii ranging from
small to large together with the morphometric form with
fitted thermodynamic coefficients (line). The thermody-
namic coefficients from the fit, for our definition of the
dividing surface, are βγR2

s ¼ −0.099, βκRs ¼ −0.835, and
βκ̄ ¼ −17.518. In contrast to the liquid-gas surface tension,
the thermodynamic coefficient γ and possibly its sign
depend on the definition of the dividing surface—here
we use the solvent accessible surface. Since γ cannot be
measured directly, this is not a problem. The agreement
between the morphometric form and the DFT data is
excellent. To ensure consistency with the real system,
we enforce the pressure p to be that of water at ambient
conditions.
Rheological studies suggest that the elasticity of soft

keratin IFs in corneocytes is most likely akin to the highly

elastic protein IFs excreted as slime from Hagfish [27,28],
which have nonlinear elastic behavior to extensions of
around 150%, vastly different from the hard keratin in hair
and nails. The initial stiffness of Hagfish IFs is 6.4 MPa,
which increases on extension through strain hardening [27].
We approximate the (engineering) stress σ versus strain
ε ¼ Δl=l0 ≡ ðl − l0Þ=l0 curve for keratin IFs in corneo-
cytes in the nonlinear elastic regime by σ ¼ αεþ βε2

where α ¼ 6.4 MPa and β ¼ 18 MPa are obtained from

FIG. 3 (color online). Total free energy Ωþ E (per unit cell) of
the helical Σþ rod packing (Fig. 1), in units of kBT × 104 as a
function of unit cell size L and helix radius R. The lower plot
shows a smaller region of the upper plot. Avalley of low total free
energy configurations, whose extremes are indicated on the lower
plot, traces a pathway for the swelling of corneocytes and
subsequent drying. The packing fractions range from 11% to
38%, comparable to volume fractions (15%–35% [7]) that can be
inferred from experimental hydration data [4,5].
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FIG. 2. The excess surface free energy per area fsurfðRÞ as
function of the inverse solute sphere radius 1=R. Symbols
denote numerical values obtained from DFT calculations, while
the full line represents the morphometric form with fitted
thermodynamic coefficients γ, κ, and κ̄. The agreement of the
numerical DFT data with the morphometric form is excellent for
all values of R.
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a fit to the experimental stress-strain data for Hagfish slime
given in Fig. 3(a) of [27]. We obtain an elastic energy E
(per unit cell) by integration as

EðlÞ ¼ πr2
�
α

2

Δl2

l0
þ β

3

Δl3

l20

�
: (3)

We take the smallest possible unit cell geometry as having
no elastic energy, thus l0 ¼ 232 nm.
We consider the combination of the grand potential Ω

and the elastic energy E, where these are opposing: Ω
minimizes with increasing volume and helical radius and E
minimizes for decreasing volume and helical radius. The
balance of these two opposing free energies is also typical
of the swelling behavior of polymer gels [29,30]. Ω ranges
from −2.3 × 104kBT when most compact to −9 × 104kBT
for large unit cell length L and radius R. The range of E is
from 0 when compact up to 30 × 104kBT at largest L and R.
When added together (Fig. 3), Ω dominates at small unit
cell length and helix radius, and E dominates beyond a
certain unit cell size and radius. The boundary between
these two zones forms the minimal configurations of the
total free energy, and passes somewhat linearly from the
compact state at the point L ¼ 35 nm and R ¼ 5.1 nm
to the global minimum of the system at L ¼ 55 nm and
R ¼ 1 nm with decreasing total free energy. The total free
energy at the global minimum is −3.55 × 104kBT and the
total free energy is −3.27 × 104kBT at the compact state,
marginally above the global minimum.
As a consequence of the minimal conformations of the

total free energy landscape, we propose that the keratin IF
geometry in corneocytes spans those configurations within
the minimal valley, with the global minimum at the swollen
state [31]. Thus, given water, the corneocyte will expand
until it reaches the global minimum, where it is impeded
from further expansion. The corneocytes then reverse back
to the compact form once the water source in removed: only
a small force is required (e.g., from evaporation) to trans-
form back to this compact state. The packing fractions of
11% when swollen through to 38% when compact Fig. 3
are comparable values to volume fractions (15%–35% [7])
that can be inferred from experimental hydration data [4,5].
In addition, the change in length within this minimal
pathway is well within the elastic regime of the keratin
IFs, a property critical to the reversibility, and not possible
with a disordered, cross-linked network structure.
Because of their hydrophilicity, the helical tubes remain

without contacts for all favorable configurations, always
having at least a thin layer of water lubricating between.
This implies that IFs in corneocytes can easily slide across
each other without cross-linking. Given that cross-linking
is often dominant in the mechanics of random filament
networks and biological materials [32], corneocytes might
be softer than expected. The absence of cross-linking
suggests causes for the complex mechanical profiles

observed in experiments [33]. The delicate balance of
competing energies in the system implies that overhydra-
tion or excessive drying of the system could cause filaments
to come in contact and irreversibly cross-link, leading to
macroscopic mechanical changes.
In other biomaterials, such as hair and nails, keratin IFs

can also assemble into hard keratin, which has very
different mechanical and hydration properties [28] to those
of corneocytes. The highly cross-linked keratin matrix of
mammalian hard keratins governs the mechanical proper-
ties of the biomaterial by preventing hydration of the
keratin [34]. Thus the absence of cross-linking in corneo-
cytes, which have a complex mechanical profile governed
by extreme swelling, is unsurprising. It also suggests that
corneocytes are held together by the complex entanglement
of the filaments rather than connectivity between them.
More practically, dermatitis is a common skin condition
associated with physical changes in corneocytes, caused by
excess hydration, excessive drying, external impact, or
malfunctions in the initial cell growth process. Our results
suggest that dermatitis could be related to irregular cross-
linking of keratin IFs, which perturbs the hydration and
mechanical profiles.
In this model, we treat the corneocyte as an infinite

periodic material, rather than the reality of a finite cell
surrounded by a lipid matrix. However, the relative size of
the unit cell is very small in relation to the corneocyte, and
thus boundary effects are limited. In addition to this, the
system is considered through a succession of equilibrium
states with a time scale on the order of hours for real
corneocyte swelling, and thus the effect of water diffusion
on the process is negligible.
The delicate energy balance and the easy expansion of

the corneocytes is due to the fact that the grand canonical
potential and the elastic energy of the system are compa-
rable in magnitude. Altering either of these properties
would drastically alter the balance of the system, changing
the skin’s ability to expand. For example, were the skin
made of the hard keratin found in hair and nails, the elastic
energy would dominate the system and prevent expansion,
thus limiting the ability of the skin to actively adapt its
barrier properties to the environment.
The water volume of corneocytes contains amino acids

known as natural moisturizing factors (NMFs) [35,36],
which prevent excessive evaporation of water. The upper
end of the minimal free energy valley, which has a
relatively low free energy compared with configurations
adjacent to the valley, may provide a natural impedance to
further drying of the corneocyte that is purely geometric,
enhancing the effect of the NMFs. In addition, the porosity
increase of the corneocytes with hydration supports the
experimental evidence of increased diffusion for water
through skin [2]. Within our model it should be possible
to study the role of NMFs theoretically in more detail,
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which in turn might result in insights and testable
predictions on their behavior.
We have shown that macroscopic swelling of corneocytes

is replicated by solvation and elasticity of helical tubes with
woven geometry equivalent to the keratin IF arrangement.
The balance of grand potential and elastic energy provides a
range of conformations that span packing fractions of keratin
IFs from native through to fully hydrated corneocytes. The
global minimum of Ωþ E is a swollen state: given water,
the corneocyte will expand then reach a natural barrier to
further swelling, yet easily transform to the compact form
once again with only a small force from evaporation once
the water source is removed. At all stages of the trans-
formation from dry to hydrated, the IFs are contact free. This
is a simple demonstration of how mesoscale geometry
determines macroscale properties of biological materials:
we have simplified the keratin IFs to helical tubes and
replicated the swelling of corneocytes from geometry alone.
This highlights the complex interplay of geometry and
function in soft matter physics and biological systems.
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