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We investigate a type of bistability occurring in population systems where noise not only causes
transitions between stable states, but also constructs the states themselves. We focus on the experimentally
well-studied system of ants choosing between two food sources to illustrate the essential points, but the
ideas are more general. The mean time for switching between the two bistable states of the system is
calculated. This suggests a procedure for estimating, in a real system, the critical population size above
which bistability ceases to occur.
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Bistable systems, as their name implies, are systems
which may reside in one of two states. Typically, these
states are extremely stable, with rare transitions only
occurring through the effects of noise (intrinsic or extrinsic)
or external perturbations.
The standard theoretical approach used to investigate

bistability is to begin by modeling the system determinis-
tically through a set of differential or difference equations. In
the deterministic system there can be no transitions between
steady states without the addition of noise to move the
system from one state to the other. The theoretical literature
examining this effect is enormous, with very many variants
of this basic scenario having been investigated in consid-
erable detail [1]. The majority of these theoretical studies fail
to use the noise structure appropriate to the system under
consideration, and reverse the logical sequence of model
building: the deterministic equations together with the
correct form of the noise should follow from a model
constructed at the microscale (see, for instance, [2] or [3]).
A bottom-up approach such as this is required to

understand unexpected and nonintuitive results such as
those seen when a chemical system with a single stable
fixed point is driven to bistability at low molecule numbers
[4]. This recently discovered mechanism for bistability,
so far only investigated in the context of biochemical
reactions, is a result of the nonlinear nature of the intrinsic
noise [4–8]. In this type of bistability, the noise is
responsible for the existence of the bistable states, as well
as causing the transitions between them, in contrast to the
conventional picture of bistability in which the role of
the noise is simply to induce transitions. A distinguishing
feature of these noise-induced bistable states is the presence
of a critical system size Nc, above which bistability does
not occur. Evidence for the effect was first found numeri-
cally in a study of autocatalytic reactions in a cell [4].
Subsequent analytical studies proposed that the phenome-
non is due to the multiplicative nature of the noise [5], and
this was later confirmed by the estimation of the critical

system sizeNc [6]. The theory has been applied to the study
of an enzymatic cycle [7]. A recent and more rigorous
analysis can be found in [8].
An experimentally testable biological system that exhibits

bistability may be found in the foraging behavior of an ant
colony. Here we consider a classic experiment, in which a
colony of ants is exposed to two identical sources of food.
The foraging ants, rather than distributing equally between
the two sources instead favor only one source [9,10]. After a
period of time they appear to turn their attention to the other
option, so that the majority of ants then start to collect their
food from the other source [10,11]. The models initially used
to explain this result were typically rather detailed [9].
However, Kirman [11] observed that analogous behavior
also occurs in other systems involving populations, for
instance, queuing [12] and stock market trading [13]. This
suggests a common mechanism depending only on shared
properties of the different systems. It is generally agreed that
the autocatalytic dynamics present in all of these systems is a
key ingredient required for their bistability [11,14].
In this Letter we propose that the underlying mechanism

for the bistability observed in the experiment described
above is the same as that found in the biochemical reactions
previously mentioned [4,5]. To study this, we use a simple
model of autocatalytic recruitment and review the estimation
of the critical system size Nc, using stationary analysis, for
our system. However, the expression obtained for Nc is not
easy to experimentally test in our system. We therefore
extend our analysis to study the time-dependent behavior of
the system, by calculating the mean switching time between
the two bistable states for different population sizes. This
provides a means to measure Nc experimentally and can be
used to test our hypothesized mechanism for bistability.
Our model consists of a colony of N ants collecting food

from two identical sources, labeled 1 and 2. Ants which
collect food from source 1 are denoted by X1 and those
which collect food from source 2 by X2. The fraction of ants
which choose source i is denoted by xi, i ¼ 1, 2. An ant
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collecting food from one source can be recruited by an ant
collecting food from the other. The recruitment of ants is
thus autocatalytic, in that the more ants collecting from any
particular source, the higher the rate of recruitment to that
source. An ant may also spontaneously choose to use the
other source. We may summarize the model through the
following reaction scheme:

X1 þ X2→
r
2X1; X2 þ X1→

r
2X2;

X2→
ϵ
X1; X1→

ϵ
X2: (1)

This model is already known in the context of chemical
reactions [5], obtained as a simplification of the Togashi-
Kaneko scheme [4]. Ant recruitment is dominant so that
0 < ϵ ≪ r, and we assume r ¼ 1without loss of generality
by noting that ϵmay always be rescaled, as discussed in the
Supplemental Material (SM) [21]. We note that the number
of ants is conserved so that x1 þ x2 ¼ 1 for all time, and
hence the system is fully described by a single independent
variable.
To fully specify the model we now give the probability

of transition TðajbÞ from state b to state a. Invoking mass
action [15],

T1 ≡ T

�
x1 þ

1

N
; x2 − 1

N
jx1; x2

�
¼ rx1x2 þ ϵx2;

T2 ≡ T

�
x1 − 1

N
; x2 þ

1

N
jx1; x2

�
¼ rx1x2 þ ϵx1: (2)

We use the transition rates to write down the master
equation for the probability density function (PDF)
Pðx1; x2; tÞ [15]:

∂tPðx1; x2; tÞ ¼
X

ðx0
1
≠x1;x02≠x2Þ

½Tðx1; x2jx01; x02ÞPðx01; x02; tÞ

−Tðx01; x02jx1; x2ÞPðx1; x2; tÞ�: (3)

The scheme of reactions (1) was simulated using the
Gillespie algorithm [16], and a typical time series for
z ¼ x1 − x2 is shown in Fig. 1. Regardless of the initial
condition, the system settles into one of the steady states
z ≈�1, indicating that the majority of ants favor one food
source. After some time, the system then switches to the
other state, z ≈∓1, where the majority of ants favor the
other source.
Unlike other forms of bistability (for example, a

Brownian particle in a double-well potential [1]), this type
of bistability cannot be understood from the fixed points
of the corresponding deterministic equations. Indeed, if we
take the limit N → ∞ [15] to eliminate stochastic effects,
we obtain the equation z

: ¼ −2ϵz (see SM [21]). This
equation has a unique stable fixed point at z� ¼ 0, which
is not seen in simulations of the full system. Thus, the

bistability observed in the stochastic system is not reflected
in the deterministic equations.
To understand the origin of the bistability, we expand the

master equation (3) in powers of the inverse population
size, N−1 (see SM [21]). After rescaling time, 2ϵt=N ¼ τ,
we find that the system is approximated by the following
stochastic differential equation (SDE) [17]:

z0 ¼ −zþ
ffiffiffiffiffiffi
Nc

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ − z2

p
ηðτÞ; (4)

where Nc ≡ 1=ϵ and ηðτÞ is Gaussian white noise with zero
mean and correlator hηðτÞηðτ0Þi ¼ δðτ − τ0Þ. As shown
in [6], Eq. (4) underlies a broad class of systems featuring
an autocatalytic network and a slow linear reaction. The
variable z ¼ x1 − x2 ranges over the interval [−1, 1],
whose extrema correspond to all ants collecting food from
a single source. Equation (4) for ϵ ¼ 0 is equivalent to the
Wright-Fisher model with mutation, under the change of
variable x ¼ ð1þ zÞ=2 [18].
We see from Eq. (4) that the strength of the intrinsic

system noise is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ − z2

p
. The noise

therefore has maximum strength at the deterministic steady
state z ¼ z� ¼ 0, pushing the system away from this point
and towards z ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ϵ
p

. Since z is defined in the
interval [−1, 1], the system cannot cross these boundaries.
Bistability originates from the dependence of the noise
strength on the variable z. At z ¼ �1 the noise term is at a
minimum, while the deterministic term −z attracts the
system back towards z�. As the trajectory leaves z ¼ �1,
the noise term regains strength and once again kicks the
system towards one of the bistable steady states z ¼ �1.
These combined effects are seen in the dynamics of Fig. 1.
A distinguishing characteristic of noise-induced bistable

states is the existence of a critical system size, above which
bistability ceases to occur. This should be contrasted with
the bistability in which the system moves between two
fixed points due to the presence of noise, where varying the
noise strength merely affects the characteristic time spent in
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FIG. 1 (color online). Snapshot of the time series for z, obtained
with stochastic simulations of the scheme of reactions (1).
Parameter values are ϵ ¼ 1=500 and N ¼ 250. Time is expressed
in units of τ ¼ 2ϵt=N.
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each bistable state. We may therefore predict that if the
bistable states are noise induced, then there should exist a
critical population size above which the behavior ceases
to occur.
As shown in previous studies [5–8,18], the transition

between the regime which shows bistable behavior and
the one that does not can be understood from the Fokker-
Planck equation corresponding to Eq. (4). Taking ∂tP ¼ 0
and imposing zero-flux boundary conditions at z ¼ �1 [1],
we obtain the stationary probability distribution

PsðzÞ ¼
C0

ð1þ 2ϵ − z2Þ1−N=Nc
; (5)

where C0 is a normalization constant, found by requiring
that the integral of PsðzÞ over the interval [−1, 1]
is unity.
The stationary distribution predicts the normalized

long-time frequency histogram of z and is plotted against
simulation data in Fig. 2 for different population sizes. For
N < Nc, PsðzÞ has a U shape, diverging at z ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ϵ
p

.
Below the critical population size, the system therefore
spends most of the time close to the bistable states. In
contrast, forN > Nc, the steady-state distribution PsðzÞ has
an inverted U shape, centered on the deterministic fixed
point z ¼ z� ¼ 0. This latter regime is the only one that is
captured by the linear noise approximation technique (the
van Kampen expansion) [15,17,19].
To estimate the critical population size requires knowl-

edge of the parameters r and ϵ (recall that we set r ¼ 1 by
rescaling ϵ). However, these reaction constants are difficult
to measure experimentally. An alternative way to estimate
Nc is provided by calculating the time taken for the system
to move from one bistable state (z ¼ −1, for example) to
the other (z ¼ 1). This time is a stochastic variable whose

mean (over many realizations) is denoted by T ϵ. Using
Eq. (4) we may find this mean switching time [1] (see the
SM for details [21]). In the rescaled time variable τ, this is
given by

T ϵ ¼
4N

ð1þ 2ϵÞNc
2F1

�
1

2
; 1 − N

Nc
;
3

2
;

1

1þ 2ϵ

�

× 2F1

�
1

2
;
N
Nc

;
3

2
;

1

1þ 2ϵ

�
; (6)

where the function 2F1 is the hypergeometric function [20].
Equation (6) agrees with simulations of the reaction
scheme (1) only for N in the neighborhood of Nc
(Fig. 3) and for N > Nc (this latter result is not shown).
Results are shown for different values of ϵ using different
symbols. Note that for small N the simulation results merge
so that the mean time is independent of ϵ. Since time was
rescaled by ϵ, however, an ϵ dependence is retained in the
definition of τ.
At small population sizes, as the simulation results

become independent of ϵ, Eq. (6) breaks down and does
not capture the system behavior. The failure of Eq. (6) in
this regime is due to assumptions made in the derivation of
Eq. (4), which is no longer representative of the system at
small population sizes. Instead, the terms neglected in the
expansion of the master equation must be retained.
Indeed, in our derivation, the noise strength in Eq. (4)

diverges as N → 0, so that the time taken to move from one
bistable state to the other shrinks to zero. In contrast, the
simulated switching times do not go to zero as N → 0.
However, we see from Fig. 4 that the range of N where our
prediction holds differs for different values of ϵ. The
agreement improves for smaller ϵ, suggesting that the
limiting value of Eq. (6) as ϵ → 0 may capture the system
dynamics at small population sizes.
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FIG. 2 (color online). Equation (5) (solid colors) is compared
against simulations of scheme (1) (symbols). Simulations are
obtained by taking the normalized histogram of a time series
of length τ ¼ 2.5 × 109. We have used ϵ ¼ 10−3 and N ¼ 1500
(blue line, triangles), N ¼ Nc ≡ 1000 (red line, squares), and
N ¼ 500 (purple line, circles).
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FIG. 3 (color online). Equation (6) (solid lines) is compared
against stochastic simulations (symbols). Parameters used are
ϵ ¼ 1=50 (blue line, triangles), ϵ ¼ 1=100 (green line, squares),
and ϵ ¼ 1=2000 (red line, circles). Each symbol has been
obtained by averaging over 500 simulations.
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Taking ϵ → 0 (see SM [21]), Eq. (6) reduces to

T 0 ¼ 2π
N

Nc − 2N
cot

�
π
N
Nc

�
: (7)

Equation (7) agrees well with simulation data for small
population sizes (Fig. 5). Since the mean switching time
depends strongly on ϵ for larger population sizes (Fig. 3),
we do not expect T 0 to accurately predict the simulation
data for larger N. Indeed, as N → Nc, Eq. (7) diverges and
thus does not capture the behavior of the system (see
SM [21]).
Thus, we have found two expressions for the mean time

to move from one bistable state to the other. Equation (6) is
valid for larger population sizes and captures the depend-
ence of the system on ϵ in this regime. Equation (7) is valid
for small population sizes and does not have any explicit
dependence on ϵ. These equations may be used to estimate
both ϵ and the critical population size Nc. To facilitate this

estimation we first linearize Eq. (7) for small N to
obtain T 0 ≈ 4N=Nc þ 2.
Since T 0 is measured in units of τ ¼ 2ϵt=N, and ϵ is

unknown, we may plot experimental results for t=N and
observe that we would expect to obtain a straight line for
small values of N. The y intercept is then given by ϵ−1,
while the gradient will be 2=ðNcϵÞ. The value obtained for ϵ
may then be checked by taking larger population sizes and
using Eq. (6). Note, however, that the value of ϵ found is the
ratio of the two reaction constants r and ϵ since ϵ has been
rescaled in order to take r ¼ 1.
In this Letter we have presented a way to experimentally

determine the critical population size in a system with
noise-induced bistable states. Using time-dependent
analysis, we have investigated the mean time taken for
the system to move between the two bistable states and
found that two regimes exist. For small population sizes,
the mean switching time is independent of ϵ and Eq. (7) is
representative of the system behavior. Conversely, for large
population sizes the value of ϵ becomes important and we
must use Eq. (6). The mean switching time is an exper-
imentally measurable quantity that may be used to confirm
or reject the hypothesis that noise-induced bistable states
may explain the empirical results seen in the experiments
on ant foraging.
The analysis may be further extended by considering the

full distribution of times to move between the bistable
states, rather than using only the mean time. In this way it
would be possible to assess any skewness of the distribu-
tion and determine how representative the mean time is of
the full distribution.
Our results do not only apply to the model described

here, as Eq. (4) is the reduced one-dimensional equation
for many stochastic systems, such as the Togashi-Kaneko
model [6]. We believe that the mechanism for noise-
induced bistability, in which the changing noise strength
at different system states leads to substantially different
behavior from the deterministic approximation, will be
applicable to a wide variety of systems.
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