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We discuss the form of the damping of magnetic excitations in a metal near a ferromagnetic instability.
The paramagnon theory predicts that the damping term should have the form γðq;ΩÞ ∝ Ω=ΓðqÞ, with
ΓðqÞ ∝ q (the Landau damping). However, the experiments on uranium metallic compounds UGe2 and
UCoGe showed that ΓðqÞ is essentially independent of q. A nonzero γðq ¼ 0;ΩÞ is impossible in systems
with one type of carrier (either localized or itinerant) because it would violate the spin conservation. It has
been conjectured recently that a near-constant ΓðqÞ in UGe2 and UCoGe may be due to the presence of both
localized and itinerant electrons in these materials, with ferromagnetism involving predominantly localized
spins. We present the microscopic analysis of the damping of near-critical localized excitations due to
interaction with itinerant carriers. We show explicitly how the presence of two types of electrons breaks
the cancellation between the contributions to Γð0Þ from the self-energy and vertex correction insertions into
the spin polarization bubble. We compare our theory with the available experimental data.
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Introduction.—Recent progress in neutron scattering mea-
surements of the spin structure factor in uranium metallic
materials UGe2 and UCoGe provided detailed information
on the dynamical structure factor of a paramagnetic metal
near the transition into an itinerant ferromagnet [1–3]. The
dynamical structure factor Sðq;ΩÞ at wave vector q and
frequency Ω is related to the dynamic spin susceptibility
χðq;ΩÞ via the relation Sðq;ΩÞ¼ χ00 ðq;ΩÞ coth ðΩ=2TÞ,
where χ00ðq;ΩÞ is the imaginary part of χðq;ΩÞ. In a
conventional paramagnon theory of a nearly ferromagnetic
metal χðq;ΩÞ ∝ 1=½1 − iΩ=ΓðqÞ� and Sðq;ΩÞ ∝
ΓðqÞ=½Ω2 þ ΓðqÞ2� at Ω ≪ vFq, with ΓðqÞ ∝ q for clean
systems and ΓðqÞ ∝ q2 in the presence of nonmagnetic
impurities [4].
This behavior has been observed in three-dimensional

electron itinerant ferromagnets such as Ni, Ni3Al, Fe,
and MnP [5–7]. Experiments on UGe2 and UCoGe, how-
ever, detected a different behavior—near Tc, ΓðqÞ extrap-
olates to a finite value at q → 0, in both the paramagnetic
and the ferromagnetic state.
In one-component fermionic systems the vanishing of

χ00 ðq → 0;ωÞ is the consequence of the conservation of
the total fermionic spin St. In particular, χ00ðq ¼ 0;ΩÞ ¼ 0
holds when the fermion-fermion interaction is mediated by
their own collective spin excitations. The situation changes,
however, if there are several different bands crossing the
Fermi level [8], or magnetic impurities and/or strong
spin-orbit coupling [9], or if the system is a two-component
one and the neutron scattering measures predominantly
the contribution from only one of them in some range
of q.

This last case is applicable to UGe2 and UCoGe because
these systems simultaneously posess itinerant and localized
(5f2) electrons [10]. In a recent work [11], Mineev argued
that the spin response at small but finite q is predominantly
determined by localized spins, because they predominantly
contribute to long-range magnetic order and to static sus-
ceptibility above the Curie temperature (the contribution
from itinerant fermions to magnetic order is around 1%;
see Ref. [10, 12]). He presented a phenomenological
description of the relaxation of localized spins due to inter-
action with itinerant carriers and obtained ΓðqÞ, which only
weakly depends on q. Indeed, the total spin of the localized
and itinerant fermions is a conserved quantity, and strictly
at q ¼ 0 and finite Ω, Sð0;ΩÞ, it must vanish; i.e., the con-
tributions to Sð0;ΩÞ from localized and itinerant fermions
must cancel out. However, because the static susceptibility
of the localized spins is much larger than the one for itin-
erant fermions, the contribution to Sðq;ΩÞ from the local-
ized spins dominates down to vFq ≪ Ω. The experiments
on UGe2 are performed well inside this range, at vFq ≥ Ω
(Ref. [13]). The total spin of the localized fermions is not a
conserved quantity, and the corresponding ΓðqÞ does not
have to vanish at q → 0.
In the present work we address the same issue from a

microscopic perspective. We show that the analysis of
ΓðqÞ at q → 0 for the systems with spin-spin interaction
is rather nontrivial, as the calculation of a spin-polarization
bubble for interacting fermions requires the consideration,
on equal footing, of the renormalizations coming from
(i) the self-energy diagram, (ii) the Maki-Thompson
(MT)-type vertex correction diagram, and (iii) the
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Aslamazov-Larkin (AL)-type diagrams. The latter have for-
mally one extra power of the coupling and are seemingly
less important, but, as we will see later, for one-component
systems they are actually of the same order as the other
terms. The reason is that the extra power of the coupling
gets absorbed into the fermionic damping which contains
the same coupling. The importance of including the
two-loop AL diagrams into the analysis of the spin suscep-
tibility of a one-component system at q → 0 has been
emphasized in Ref. [14], where the authors considered a
Fermi liquid with the self-energy ΣðωÞ ¼ λω and demon-
strated that the combination of self-energy, MT, and AL
corrections preserves spin conservation. Here we demon-
strate this for the more general case, when the self-energy
also includes thermal damping Σ00ðTÞ. Further, we point out
the difference between one- and two-component systems.
We argue that, for two-component systems, the AL dia-
grams become irrelevant at weak coupling because the bal-
ance between the damping and coupling is lost and the
extra power of the coupling is not cancelled out. The
remaining self-energy and MT insertions into the spin-
polarization bubble add up and yield a nonzero Γðq ¼ 0Þ,
which is proportional to the imaginary part of the single-
particle self-energy of a conduction electron Σ00ðTÞ.
We compute Σ00ðT;ωÞ due to interaction with near-critical
localized carriers and show that it has a peak at Tc, in agree-
ment with the experiments [3].

One-component itinerant system.—To set the stage for the
analysis of the two-component systems, consider first a
one-component system of itinerant electrons, for which
the total electronic spin St is conserved. The conservation
of St implies that its zero-momentum Fourier component
does not depend on time t; hence, both χðq;ΩÞ and the
dynamical structure factor Sðq;ΩÞ should vanish at q ¼ 0
and any nonzero frequency Ω. As an example (and to
simplify the formulas), consider a 2D system with isotr-
opic dispersion k2=ð2mÞ. For noninteracting fermions
χ0ðq;ΩÞ¼ðm=πÞð1−Ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2−v2Fq

2
p

Þ, and χ0ð0;ΩÞ and
S0ð0;ΩÞ vanish, as they should. At finite q and at
Ω ≪ vFq, χ0ðq;ΩÞ ≈ ðm=πÞ½1þ iΩ=Γ0ðqÞ�, with Γ0ðqÞ ¼
vFq. This quantity is nonzero; however, it vanishes
at q ¼ 0. In the presence of disorder, Γ0ðqÞ acquires a
diffusive form Γ0ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 þ γ2

p − γ, where γ is the
impurity scattering rate, and it still vanishes at q ¼ 0
[Γ0ðqÞ ∝ q2 at small q]. We emphasize that the vanishing
of Γ0ðq ¼ 0Þ directly follows from spin conservation,
because if Γ0ð0Þ was finite, it would immediately imply
a nonzero S0ð0;ΩÞ, in violation of the spin conservation.
Because the four-fermion interaction U is SUð2Þ spin

invariant, Γðq ¼ 0Þ should vanish in an interacting system
as well. The total susceptibility χtotðq;ΩÞ is proportional to
the fully renormalized spin-polarization bubble χðq;ΩÞ
(a fully dressed particle-hole bubble with spin σ− matrices
in the vertices). In the RPA, χtotðq;ΩÞ ¼ χðq;ΩÞ=
½1 − Ūχðq;ΩÞ�, where Ū ¼ U=2. Using the free-fermion

form of χðq;ΩÞ, one immediately reproduces the paramag-
non formula Sðq;ΩÞ ∝ ΓðqÞ=½Ω2 þ ΓðqÞ2�, with ΓðqÞ ∝ q.
The conservation of the total spin implies that the fully

renormalized χtotðq;ΩÞ ∝ χðq;ΩÞ should vanish at q ¼ 0.
For free fermions, this holds, as we demonstrated above. To
go beyond free fermions, we need a model for fermion-
fermion interaction. With the uranium compounds in mind,
we consider a nearly ferromagnetic metal. Following earlier
works [15], we assume that the low-energy physics is
described by an effective model in which the bare U is
replaced by an effective dynamical interaction Ueffðq;ωÞ
in the spin channel, which is mediated by χtotðq;ωÞ.
In the RPA, Ueffðq;ωÞ ¼ Ū2χtotðq;ΩÞ ¼ Ū2χðq;ΩÞ=
½1 − Ūχðq;ΩÞ�. Using Ūχð0; 0Þ ≈ 1, valid near a ferromag-
netic transition, this can be simplified to Ueffðq;ωÞ≈
Ū=½1 − Ūχðq;ΩÞ�. We will show how the condition
χðq ¼ 0;ΩÞ ¼ 0 is satisfied at each order in Ū.
The diagrams for the χðq ¼ 0;ΩÞ to order Ū are shown

in Fig. 1(b). The first two diagrams contain the self-energy
insertions, the third is the MT vertex correction diagram.
Each of the three diagrams contains the product of four
Green functions and one dynamical Ueffðq;ωÞ ∝ Ū. In
explicit form, χðq ¼ 0;ΩÞ ¼ IseðΩÞ þ IMTðΩÞ is [16]

IseðΩÞ ¼ −6
ZZ

G2ðk;ωÞGðk;þq;ωþ Ω0Þ

× ½ðGðk;ω −ΩÞ þGðk;ωþΩÞ�Ueffðq;Ω0Þ;

IMTðΩÞ ¼ 2

ZZ
Gðk;ωÞGðk;ω −ΩÞGðk;þq;ωþ Ω0Þ

×Gðkþ q;ω −ΩþΩ0ÞUeffðq;Ω0Þ; (1)

(a)

(c) (d)

(b)

FIG. 1. (a)–(c) The spin-polarization bubble χðq;ΩÞ. The thin
lines are fermionic propagators, the wavy line is the effective in-
teraction mediated by the total spin susceptibility χtotðq;ΩÞ ¼
χðq;ΩÞ=½1 − Ūχðq;ΩÞ�. Each side vertex and each interaction
vertex contains spin σ matrices (not specified). (a) The bubble
for free fermions χ0ðq;ΩÞ; (b) spin-polarization bubble with
self-energy and MT-type vertex corrections. (c) The two AL dia-
grams. By power counting, they are of higher order, but in fact,
they are of the same order as the diagrams in (b) (see text).
(d) One-loop diagram for the self-energy of an itinerant fermion
in a a two-component model, due to interaction with localized
spins. The wavy lines are χLðq;ΩÞ for localized electrons.

PRL 112, 037202 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 JANUARY 2014

037202-2



where the prefactors are due to the summation over spin
indices, Gðk;ωÞ ¼ ðω − εk þ iδ sgnωÞ−1, and we adopt
the notation ∬ ≡ R

ddkdω=ð2πÞdþ1
R
ddqdΩ0=ð2πÞdþ1 for

a d-dimensional system. Applying several times the iden-
tity, Gðk;ωÞGðk;ω −ΩÞ ¼ ½Gðk;ω −ΩÞ −Gðk;ωÞ�=Ω,
we explicitly rewrite the two terms as

IseðΩÞ ¼ 6AðΩÞ; IMTðΩÞ ¼ 2AðΩÞ; (2)

where

AðΩÞ ¼ 1

Ω2

ZZ
½2Gðk;ωÞ −Gðk;ω −ΩÞ −Gðk;ωþΩÞ�

×Gðkþ q;ωþ Ω0ÞUeffðq;Ω0Þ: (3)

We see that the self-energy and MT diagrams are of the
same sign and add up: IseðΩÞ þ IMTðΩÞ ¼ ð4=3ÞIseðΩÞ.
The frequency-dependent part of IseðΩÞ can be evaluated
exactly at small Ω. We obtain IseðΩÞ ¼ Iseð0Þ þ 3iŪmΩ=
½2πΣ00ðTÞ�, where Σ00ðTÞ is the imaginary part of the fer-
mionic self-energy at zero frequency. If we stop here
and associate ð4=3ÞIseðΩÞ with the fully renormalized
χð0;ΩÞ to order Ū, we would conclude that Γðq ¼ 0Þ
becomes finite, in apparent violation of the spin conserva-
tion. It turns out, however [14], that there are two other con-
tributions to χð0;ΩÞ to order Ū. They come from the two
AL diagrams [17] shown in Fig. 1(c). By power counting,
these diagrams are of order Ū2, but we will see that one
power of Ū actually cancels out.
The two AL diagrams are equivalent and add up [18],

such that one can consider one of them and multiply the
result by 2. In explicit form, we have [16]

IALðΩÞ¼16

ZZZ
Gðk1;ω1ÞGðk1;ω1−ΩÞGðk2;ω2Þ

×Gðk2;ω2−ΩÞGðk1þq0;ω1þΩ0Þ
×Gðk2þq0;ω2þΩ0ÞUeffðq0;Ω0ÞUeffðq0;Ω0 þΩÞ;

(4)

where ∭ ≡R
ddk1dω1=ð2πÞdþ1

R
ddk2dω2=ð2πÞdþ1

R
ddq0

dΩ0=ð2πÞdþ1. We use the same identity for the Green func-
tions as before, but also express the product of the two
effective interactions as

Ueffðq0;Ω0ÞUeffðq0;Ω0 þΩÞ

¼ Ueffðq0;Ω0Þ −Ueffðq0;Ω0 þ ΩÞ
U−1

eff ðq0;Ω0 þ ΩÞ −U−1
eff ðq0;Ω0Þ

¼ Ueffðq0;Ω0Þ −Ueffðq0;Ω0 þΩÞ
χðq0;Ω0Þ − χðq0;Ω0 þΩÞ ; (5)

where, we recall, U−1
eff ¼ 1=Ū − χðq;ΩÞ and χðq0;Ω0Þ ¼

2
R
Gðk;ωÞGðkþ q0;ωþ Ω0Þ. We see that the right-hand

side of Eq. (5) is of order Ū, not Ū2, as one could assume by
looking at the left-hand side of this equation. This

cancellation of one power of Ū is the natural consequence
of the fact that the dispersion of the effective interaction
Ueffðq;ΩÞ is due to the interaction with the same fermions
whose susceptibility we consider.
Substituting Eq. (5) into Eq. (4) we find after some alge-

bra [16] that IALðΩÞ has the same form as self-energy and
MT contributions and is given by

IALðΩÞ ¼ −8AðΩÞ: (6)

As a result, ItotðΩÞ ¼ IseðΩÞ þ IMTðΩÞ þ IALðΩÞ ¼ 0; i.e.,
ΓðqÞ vanishes at q ¼ 0, as it indeed should for consistency
with the spin conservation principle. For completeness, we
analyzed other diagrams which contain Ū2 in the prefactor
but found that they remain of order Ū2, up to logarithmic
corrections. Only in the two AL diagrams one power of Ū is
cancelled out.

Two-component systems.—We now analyze how this result
changes when we consider a two-component system con-
sisting of localized and itinerant electrons. As we discussed
in the introduction, we focus on the range vFq ∼ Ω, where
the full dynamical susceptibility almost coincides with the
one for localized spins, χLðq;ΩÞ. By itself (i.e., with no
itinerant fermions present), χLð0;ΩÞ vanishes. We consider
how it is modified due to the interaction with the itinerant
electrons.
We use the same model as before with the effective spin-

fermion coupling

H ¼ Φ
X

q

sq · S−q; (7)

where sq ¼ P
k;αβc

†
k;ασαβckþq;β, with c†kα; ckα being the

creation and annihilation operators for itinerant electrons,
σα;β are Pauli matrices, and Sq describes the localized spins.
This interaction gives rise to the correction to the suscep-
tibility of the localized spins χtotL ð0;ΩÞ ¼ χLð0;ΩÞþ
ItotðΩÞ, where Itotðq;ΩÞ is the fully renormalized spin-
polarization bubble of itinerant fermions. Simultaneously,
Eq. (7), taken to second order, gives rise to effective inter-
action between itinerant carriers, mediated by the localized
spins: Φeffðq;ΩÞ ∼ Φ2χLðq;ΩÞ, as in Figs. 1(a)–1(c). The
crucial difference with the previous case is that now
the localized spins have their own dynamics even in the
absence of the interaction with itinerant carriers. This
dynamics is consistent with the conservation of the total
spin of localized carriers; e.g., in a paramagnetic state it
is spin diffusion, χLðq;ΩÞ ¼ χ0=½q2 þ ξ−2 − iΩ=ðDq2Þ�.
However, when we include the spin-spin interaction
between localized and itinerant carriers, we find that the
contributions from AL diagrams no longer cancel out
the contribution from self-energy and MT terms because
the difference χ−1L ðq0;Ω0Þ − χ−1L ðq0;Ω0 þΩÞ in the analog
of Eq (5) is nonzero even when Φ ¼ 0. As a consequence,
the extra Φ2 in the AL diagrams does not cancel out, and
the AL contribution IALðΩÞ becomes small compared
to self-energy and MT terms. The sum of these two is,
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according to Eq. (2), ð4=3ÞIseðΩÞ ¼ Aþ iBΩ=Σ00ðTÞ,
where A and B are constants. Then, to leading order in Φ,

χtotL ðq → 0;ΩÞ ¼ 4

3
IseðΩÞ ¼ Aþ iB

Ω
Σ00ðTÞ ; (8)

i.e., the system has a nonzero ΓLðq → 0Þ ∝ Σ00ðTÞ. This
result holds for both 2D and 3D systems.
At small but finite q and at Ω < Dq2 the static part of

χLð0;ΩÞ can be approximated by χ0ξ2, and once the damp-
ing due to interaction with itinerant carriers exceeds the dif-
fusion term, the susceptibility and the structure factor
become in the ladder approximation

χtotL ðq;ΩÞ ≈ χ0ξ
2

1 − i½Ω=ΓLðqÞ�
; Sðq;ΩÞ ∝ χ0ξ

2ΓLðqÞ
Ω2 þ Γ2

LðqÞ
;

(9)

where ΓLðqÞ ≈ ΓLðq ¼ 0Þ ∝ Φ2Σ00ðTÞξ−2.
The physical reason for a nonzero ΓLðq ¼ 0Þ is the fact

that, when itinerant and localized electrons interact via
spin-spin coupling S · s, only the total combined spin is
conserved, while the localized spin S can change its z com-
ponent and transfer the difference to the spin s of an itin-
erant electron. This reasoning parallels the one presented
by Mineev [11]. He also found ΓLðq ¼ 0Þ ∝ ξ−2. Our
microscopic consideration expresses ΓLðq ¼ 0Þ in terms
of the coupling Φ and the temperature-dependent fermionic
self-energy of the itinerant electrons Σ00ðTÞ. This allows us
to proceed further with the analysis of the temperature
dependence of Γð0Þ and comparison with the experimental
data.

Fermionic self-energy.—The diagram for the fermionic
self-energy is presented in Fig. 1(d). The wavy line is
the propagator of localized spins χL, which we assume
to have a diffusive form. Using the spectral representation
of Gðk;ωÞ and χLðkþ q;ωÞ, we obtain

Σ00ðTÞ ∝ Φ2

Z
dΩΩ

sinhðΩ=TÞ
Z

dd−1q Dq2

D2q4ðξ−2 þ q2Þ2 þΩ2
:

(10)

At some distance away from the transition point, Σ00ðTÞ ∝
T3=2 in 2D and ðT2=EFÞ log EF=T in 3D. This dependence
holds both in the paramagnetic phase [where Eq. (10) is
valid] and in the ferromagnetic state. Right at the transition
point, T ¼ Tc, ξ ¼ ∞, Σ00ðTÞ is enhanced: a self-consistent
solution yields Σ00ðTÞ ∝ T log T in 3D and Σ00ðTÞ ∝ T4=5

in 2D. As the result, ΓLðTÞξ2 ∝ Σ00ðTÞ scales as some
power of T below and above the transition, but we get
an enhancement very near the transition point. In Fig. 2
we compare our theory with the experimental data for
Γðq; TÞξ2 as a function of T in UGe2 (Ref. [1]). We recall
that we identify ΓLðq; TÞ with the measured Γðq; TÞ over
the range vFq ≥ Ω probed by the experiments [13]. At

asymptotically small vFq ≪ Ω, Γðq; TÞ should indeed van-
ish. The data are consistent with our result that there is a
smooth increase of ΓðTÞξ2 with T in both the ferromagnetic
and paramagnetic states, on top of which there is a peak
at Tc.

Conclusion.—To conclude, in this Letter we presented a
microscopic study of the damping term of spin excitations
in a metal near a ferromagnetic instability. We demon-
strated that in a one-component system the spin scattering
rate ΓðqÞ vanishes at q ¼ 0 as a consequence of the spin
conservation. We argued that to see this in a loop expan-
sion, one needs to invoke AL scattering processes. We then
considered a two-component model with localized and itin-
erant fermions, which was argued [10,11] to describe ferro-
magnetic uranium compounds such as UGe2 and UCoGe.
Localized spins mostly contribute to long-range order and
to Curie susceptibility, and for vFq ≥ Ω, probed by the
experiments, the measured damping rate Γðq; TÞ almost
coincides with ΓLðq; TÞ for localized spins. We showed
that for ΓLðq; TÞ the AL diagrams are relatively small.
Without the AL contribution, the spin scattering rate
ΓLðq ¼ 0Þ becomes finite and scales with the tempera-
ture-dependent part of fermionic self-energy Σ00ðTÞ for itin-
erant fermions. We found that ΓLð0; TÞξ2 has a peak at Tc.
This is consistent with the data on UGe2.
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