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The evolution of beam phase space in ionization injection into plasma wakefields is studied using theory
and particle-in-cell simulations. The injection process involves both longitudinal and transverse phase mix-
ing, leading initially to a rapid emittance growth followed by oscillation, decay, and a slow growth to
saturation. An analytic theory for this evolution is presented and verified through particle-in-cell simula-
tions. This theory includes the effects of injection distance (time), acceleration distance, wakefield struc-
ture, and nonlinear space charge forces, and it also shows how ultralow emittance beams can be produced
using ionization injection methods.
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Research on wakefield accelerators driven by the propa-
gation of ultrashort high power lasers or intense relativistic
charged particle beam pulses through plasma has made
great strides in the past decade [1]. In the laser driver case,
energy gains up to 2 GeV and energy spreads of a few
percent have been achieved using centimeter scale plasmas
[2–6]; in the beam driver case, an energy gain more than
42 GeV has been demonstrated in a meter-scale plasma
[7–9]. These have inspired great interest in plasma wave
wakefield accelerators worldwide as drivers for compact
coherent light sources for science and technology, on the
one hand, and TeV-class colliders with much smaller foot-
print than the current rf-based accelerators for high energy
physics, on the other hand. However, these applications
require beams that have extremely small transverse and
longitudinal emittances or phase-space area, which is for-
mally defined as ϵN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi − hxpxi2
p

=mc, where h·i
represents an ensemble average over the electron phase-
space distribution. Therefore, the next challenge for plasma
accelerators is to perfect methods for controlled injection
of charge in the wake that can produce such low emittance
beams.
Many novel methods for controlled injection have been

proposed and demonstrated, such as injection by using
plasma density ramps [10], by colliding laser pulses [11],
and by ionization-induced injection [5,12–17]. In ioniza-
tion injection, electrons are produced inside the wake by
tunneling ionization by the electric field of laser pulse or
by the combined field of the beam driver and the wake,
where they can be more easily captured and accelerated.
Recent computational work [18–20] including both self-
consistent simulations and tracking of particles in pre-
scribed fields has shown that 10 nm emittances may
be achievable through ionization injection. However,
the ultimate emittance is determined from a complex
six-dimensional phase dynamics which needs to be better

understood. This area of research is, therefore, of funda-
mental importance for achieving beam quality well
beyond what is achievable with current technology.
In this Letter, we examine the effects that affect the beam

phase-space evolution of electrons in ionization-induced
injection within plasma wakes using a combination of
theory and simulations. We find that there are three distinct
stages in this evolution and that each stage can impact the
final beam quality. In a typical case where the injection time
is limited to few inverse plasma periods (2πω−1

p ) and the
charge is low, these three stages are as follows. First, when
ionization is occurring, the emittance of the injected beam
grows quickly in time from the initial thermal emittance.
Second, immediately following ionization, the emittance
slowly decreases to a minimum value. Finally, the emit-
tance again gradually increases to a saturated value. If
the ionization time is more than ∼πω−1

p , the emittance
grows to the saturated level during the first stage including
an oscillatory behavior before it slowly decreases. In the
“high” charge limit the emittance evolves monotonically
towards the same saturated value.
The theory reveals that the evolution in emittance

described above is due to a complex longitudinal and trans-
verse phase mixing process of electrons born at different
times. The derived expressions clearly show how the
emittance depends on different physical parameters, e.g.,
injection distance, acceleration distance, wakefield struc-
ture, and nonlinear self-forces. The predictions are com-
pared against results from OSIRIS [21] particle-in-cell
(PIC) simulations and good agreement is obtained.
To understand the emittance evolution, we first analyze

the single particle motion using the equation of motion for
a charged particle undergoing acceleration and betatron
motion [22] in a nonlinear wake excited in the blowout
regime [23–25],
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x⃗
::

⊥ þ γ
:

γ
x⃗
:

⊥ þ k2βx⃗⊥ ¼ 0; (1)

where x⃗⊥ are the transverse coordinates of the particle, the
overdot refers to derivative with respect to s≡ z, the propa-
gation distance, and kβ ¼ kp=

ffiffiffiffiffi
2γ

p
is the betatron wave

number. We use s together with the new variable ξ≡ ct −
z which defines the longitudinal position of the particle
inside the wake. For a relativistic particle ξ remains nearly
constant and s ¼ ct. In the limit γ

:: ≪ kβγ
:
and γ

: ≪ kβγ,
Eq. (1) has a general asymptotic solution of the form
x⃗⊥ ¼ ðx⃗⊥0=γ1=4Þei

R
dskβ . In addition, exact solutions for

Eq. (1) can be found for specific cases such as when
γ
: ¼ const ¼ qEz=mc2, which is reasonable when phase
slippage is not important. For this case, Eq. (1) becomes

x
:: þ Ez

γ0 þ Ezs
x
: þ x

2ðγ0 þ EzsÞ
¼ 0; (2)

where γðsÞ ¼ γ0 þ Ezs, and we normalize position to k−1p ,
time to ω−1

p , Ez to mcωp=e, and charge to e. Exact and
asymptotic solutions for Eq. (2) are

x ¼ c1J0

� ffiffiffiffiffiffi
2γ

E2
z

s �
þ c2Y0

� ffiffiffiffiffiffi
2γ

E2
z

s �
≈ C

�
2E2

z

π2γ

�
1=4

cosΦ;

(3)

x
: ¼ −

ffiffiffiffiffi
1

2γ

s �
c1J1

� ffiffiffiffiffiffi
2γ

E2
z

s �
þ c2Y1

� ffiffiffiffiffiffi
2γ

E2
z

s ��

≈ −C
�

E2
z

2π2γ3

�
1=4

sinΦ; (4)

where Φ ¼ ð ffiffiffiffiffi
2γ

p − ffiffiffiffiffiffiffi
2γ0

p Þ=Ez is the betatron phase. The
asymptotic solutions are of the general form with
Φ ¼ R

ds=
ffiffiffiffiffi
2γ

p
. Direct comparison with single particle

and PIC simulations shows that the asymptotic expressions
are valid with high accuracy when γ ≳ 2 [26].
We consider the x-px phase space corresponding to one

of the two transverse directions. Electrons are defined by
their ionization time si and initial phase-space location
ðx0ðsiÞ; px0ðsiÞÞ. In addition, electrons of interest are rap-
idly accelerated as they reach a longitudinal position ξf in
the wake where they remain phase locked and thus feel a
constant Ez. As we show later, electrons ionized at the same
si can reside over the full range of ξf within the bunch (we
call this longitudinal phase mixing), and thus feel a range of
Ez which we define as δEz. We also assume that each elec-
tron begins at rest and the rapid interaction with the incom-
ing laser leads to a small natural spread in px. This
“thermal” spread can thus be neglected.
We integrate Eq. (2) for many test electrons. To model

the effect of δEz, the Ez of each electron is randomly chosen
from 0.9 to 1.1. In Fig. 1(a) we show electrons ionized at dif-
ferent times. After a group of electrons is ionized they begin

to rotate in x-px phase space. The first group (red) has a
betatron phase ΦM, and the most recent group (purple) has
a phase Φm. If ionization continues, then Φm ¼ 0. Clearly,
the area in phase space increases during the injection process
due to each group of electrons having a different betatron
phase; we call this transverse phase mixing.
In Fig. 1(b) we show the phase space at a “ time" after the

ionization has stopped. For simplicity, we consider a case
where the injection time Δs < π. However, electrons at ΦM
have a higher energy (due to being accelerated for a longer
time) and hence lower betatron frequency than those
electrons at Φm. As a result, ΦM − Φm ≡ ΔΦ gradually
decreases and hence the emittance gradually decreases.
Later in time, due to any spread in Ez, the electrons ion-

ized at the same time develop a spread in phase. Eventually,
the electrons at ΦM (Φm) are those injected first (last) but
which have experienced the smallest (largest) Ez. In this
case, electrons at ΦM now rotate faster than those at Φm,
causing the emittance to gradually increase.
It turns out that a simple expression for the above emit-

tance evolution process can be obtained if one assumes that
the phase-space distribution is independent of Φ in a sector
as shown, for example, by the dotted lines in Fig. 1(c).
From Eqs. (3) and (4), one can see that the phase-space
coordinates ðx; pxÞ depend very weakly on particle energy
ð∼γ1=4Þ; therefore, for a given time, we can assume
x ¼ x0ðγ0=γ̄Þ1=4 cosΦ; px ¼ x0ðγ0γ̄Þ1=4 sinΦ=

ffiffiffi
2

p
, where

the γ̄ is the average energy of the injected particles at this
time. We can obtain hx2i ¼ σ2x0ðγ0=γ̄Þ1=2½1þ ðsin 2ΦM− sin 2ΦmÞ=ð2ΦM − 2ΦmÞ�=2, hp2

xi ¼ σ2x0ðγ0γ̄Þ1=2½1−
ðsin 2ΦM − sin 2ΦmÞ=ð2ΦM − 2ΦmÞ�=4, and hxpxi ¼
ðσ2x0γ1=20 Þðcos 2ΦM − cos 2ΦmÞ=ðΦM − ΦmÞ=4

ffiffiffi
2

p
, where
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FIG. 1 (color online). Phase-space snapshots from single par-
ticle model illustrating the transverse phase mixing process.
(a)–(c) x-px phase space at different times: (a) t ¼ 3 ðω−1

p Þ when
the ionization is just terminated, (b) t ¼ 8, (c) t ¼ 94. (d) x-px
phase-space trajectory for a typical particle, where the color rep-
resents the relativistic factor γ. Note that at early time, γ is corre-
lated with the ionization time si.
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σ2x0 ¼
R
x20fðx0Þdx0 and fðx0Þ is the normalized distribu-

tion function when the electrons are born. Therefore, the
normalized emittance

ϵNðΔΦÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi − hxpxi2
q

¼ ϵsat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
sinΔΦ
ΔΦ

�
2

s
; (5)

whereΔΦ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEzmzMþ1Þp

=Ezm− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEzMzmþ1Þp

=EzM,
zM;m ¼ s − siM;m, and siM;m refers to when electrons at
M;m were ionized, ϵsat ¼ σ2x0=2

ffiffiffi
2

p
is the value of the

emittance when the phase ellipse is filled out, in real units,

ϵsat½μm� ¼ 1

2
ffiffiffi
2

p kp½μm−1�σ2x0½μm2�: (6)

If we neglect δEz, which is reasonable early in time, and
assume injection is still occurring (zm ¼ 0) and ΔΦ < 1,
then

ϵN ≈ ϵsat
ΔΦffiffiffi
3

p ≈ ϵsat

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ezz

p − 1

Ez
; (7)

which shows that ϵN grows with propagation distance.
After the injection terminates, the injected electrons con-

tinue their betatron oscillations. For each injected electron
Φ≫1 and δΦ≡ Φ − hΦi ≪ Φ, Φ¼ð ffiffiffiffiffi

2γ
p − ffiffiffiffiffiffiffi

2γ0
p Þ=Ez and

γ ¼ γ0 þ Ezz, leading to δΦ=Φ ≈ ðδz=z − δEz=EzÞ=2. The
variance of δΦ can be obtained by assuming the independ-
ence between the accelerating field and the injection time,

σΦ ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
hδΦ2i

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Ez

�
σ2z
z
þ z

�
σEz

Ez

�
2
�s
; (8)

where σ2z ¼ hðsi − hsiiÞ2i and σ2Ez
¼ hðEz − hEziÞ2i. To

obtain an expression of ΔΦ in terms of σΦ, a certain dis-
tribution of electrons needs to be assumed. For a uniform
distribution, ΔΦ ¼ ffiffiffiffiffi

12
p

σΦ, Eq. (5) then becomes

ϵN ¼ ϵsat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
sin

ffiffiffiffiffi
12

p
σΦffiffiffiffiffi

12
p

σΦ

�2
s

: (9)

Equations (8) and (9) predict that for z < ðEz=σEz
Þσz ≡ z0

the emittance actually decreases; it reaches a local mini-
mum at z0, and then increases until it saturates at ϵsat.
Therefore, to achieve the minimal emittance, the accelera-
tion distance should be optimized to be close to z0.
We next compare these predictions against self-consistent

2D OSIRIS simulations of injection triggered by a laser
pulse into the wake produced by an electron beam
[18–20]. In the sample simulations the laser is copropagat-
ing with the wake. As schematically shown in Fig. 2(a), in

the simulation the beam driver propagates in a mixture of a
plasma with a density np ¼ 1.6 × 1017 cm−3 and neutral He
gas of density nHe ¼ 1.6 × 1013 cm−3. The simulation used
a 5000 × 4000 cell grid and 2 and 4 particles per cell for the
plasma and neutral He, respectively. In Fig. 2(b) the evo-
lution of the emittance in the simulation and the predictions
of Eq. (5) (during ionization) and Eq. (9) (after ionization)
using σz and σEz

calculated from the simulation are com-
pared, and the agreement is very good. The simulation
curve also oscillates in time immediately after the rapid
increase. In this case the ionization duration is limited by
the Rayleigh length of the laser and is ∼0.6 ps > πω−1

p .
Therefore, the first group of electrons that are ionized will
have rotated through more than an angle of π in x-px phase
space. This is illustrated in Fig. 1(d) where the trajectory in
x-px space of an electron born at rest is shown. As it is
accelerated its betatron frequency and amplitude in x
decreases while its amplitude in px increases. As a result,
the edge of the phase space for a collection of electrons is
made up of layers of groups of electrons corresponding to
each πω−1

p of injection. Each group corresponds to an
ellipse with a different aspect ratio, and each ellipse has
edge in phase space given by the trajectory shown in
Fig. 1(d), as can be seen in Fig. 2(c). The area in phase
space will therefore oscillate at twice the betatron fre-
quency. After several oscillations, the particles become
smeared out in x-px phase space and the oscillations damp
away. In Fig. 2(d) we show x-px for z ¼ z0 where the
emittance reaches its minimum, and it can be clearly
seen that the range of ΔΦ < π=2 at this time, even though
ΔΦ ≈ 3π=2 at the end of injection.
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FIG. 2 (color online). (a) 2D PIC simulation of ionization in-
jection by a laser into a beam driven wake. Drive beam (green):
σr¼15 μm;σz¼25 μm;nb¼2.6×1017 cm−3;Eb¼2GeV. Laser:
λ ¼ 800 nm, a0 ¼ 0.04, w0 ¼ 3 μm, τ ≈ 30 fs. (b) Comparison
of the emittance evolution between simulations and theory.
The red line and the black line are for the laser polarized in
or out of the simulation plane, respectively. The x-px phase space
when the injection is terminated (c) and when z ¼ z0 ðdÞ.
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Equations (8) and (9) are based on Eq. (2), where space
charge forces are neglected. For relatively large injected
charge, the nonlinear space charge force in both the longi-
tudinal and transverse directions of the injected electrons
could modify the trajectories of the electrons while they
are at low energy, thereby modifying the evolution of
the emittance. For cases where the total injection phase
is larger than π, space charge effects lead directly to a
saturation of the emittance around ϵsat. In Fig. 3(a) this sat-
uration behavior can be clearly seen. The quadratic depend-
ence of ϵsat on the laser spot size is also verified through
PIC simulations with a good agreement [Fig. 3(b)]. For
cases where the total injection phase is much less than
π, Eq. (5) suggests that very small emittance can be
achieved. In Fig. 3(a) the emittance evolution of a simula-
tion in which the ionization time was much shortened by
reducing the length of the region of neutral He is shown
(green curve). To control the total injected charge, the
neutral He density is increased proportionally in the simu-
lations. One can see that the initial emittance is much
reduced, and the emittance slowly increases during the
acceleration process (at low charge it does not increase).
However, the increase of total projected emittance is mainly
due to the difference of accelerating field within the bunch,
and on each slice the emittance remains invariant even with
the effect of the space charge force. The dominant space
charge effect is the longitudinal expansion of the beam lead-
ing to a larger spread in the accelerating field. Therefore, if
the beam load can be optimized to flatten the wake, the pro-
jected emittance can be better controlled [27,28].
The slice emittance can also be affected by a longitudinal

mixing process occurring in the injection stage. Electrons
ionized at different times (and different transverse loca-
tions) can reside within the same longitudinal beam slice
through this mixing. Furthermore, this can lead to different

phase-space distributions including a spread in initial
energy, thereby leading to transverse mixing within a slice.
This is a fundamentally different situation compared to the
phase mixing process in traditional accelerators [29]. This
mixing can be described by a trapping condition in [14].
This injection condition can be approximated as δψ ≈ −1,
where ψ ≡ ðe=mc2Þðφ − vφ=cAzÞ, and ψ in the ion chan-
nel can be expressed as ψðξ; rÞ ≈ ½r2bðξÞ − r2�=4, where
rbðξÞ is the normalized radius of the ion channel and it
has a spherical shape for sufficiently large blowout radius
rm, i.e., r2bðξÞ ¼ r2m − ξ2 [23–25]. The final relative longi-
tudinal position of each injected electron can be obtained
by applying δψ ≈ −1:

ξf ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ξ2i þ r2i − r2f

q
; (10)

where rm > 2 is implicitly required. In many cases, ri and
rf can be neglected since ri; rf ≪ 1. An electron’s initial
position is defined by (ξi; ri; si), and the distribution of
electrons in ξi will vary with ri and si depending on the
laser transverse and longitudinal profiles (including its
focusing optics). Therefore, each final slice of the injected
beam is composed of the electrons ionized at different
longitudinal positions, different transverse locations, and
different times. This also leads to the electrons within a
slice having different energies (when they are trapped
and initially accelerated) and each slice having a different
phase-space distribution. In Fig. 4(a) we plot the relation
between ξf and ξi at a propagation distance of z ≈
1mm from a PIC simulation with a Gaussian-shaped laser
and compare with our theoretical estimate (where ri and rf
were neglected), and a similar trend is seen. In Fig. 4(b) we
plot the relation between ξf and initial r ¼ x of each elec-
tron, with each color representing a different birth time.
One can see clearly that the equal-time contours have a
U shape, and this is mainly due to the Gaussian intensity
profile. From the color code of both Figs. 4(a)and 4(b),
electrons born at the same time are seen to be distributed
into each slice. In the theory curves of Fig. 2(b) we used the
initial phase-space distributions from the self-consistent
simulations which included longitudinal mixing.
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In summary, the evolution of beam phase space in ion-
ization injection in plasma wakefields is analyzed using
theory and simulations. Two key phase mixing processes,
namely, longitudinal and transverse phase mixing, are
found to be responsible for the complex emittance dynam-
ics that shows initial rapid growth followed by oscillation,
decay, and a slow growth to saturation. An analytic theory
is developed to include the effects of injection distance
(time), acceleration distance, wakefield structure, and non-
linear space charge forces. Formulas for the emittance in
the low and high charge regimes are presented and verified
through PIC simulations with good agreement.
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