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The ability to control wave propagation in highly deformable layered media with elastic instability-in-
duced wrinkling of interfacial layers is presented. The onset of a wrinkling instability in initially straight
interfacial layers occurs when a critical compressive strain is achieved. Further compression beyond the
critical strain leads to an increase in the wrinkle amplitude of the interfacial layer. This, in turn, gives rise to
the formation of a system of periodic scatterers, which reflect and interfere with wave propagation. We
demonstrate that the topology of wrinkling interfacial layers can be controlled by deformation and used to
produce band gaps in wave propagation and, hence, to selectively filter frequencies. Remarkably, the
mechanism of frequency filtering is effective even for composites with similar or identical densities, such
as polymer-polymer composites. Since the microstructure change is reversible, the mechanism can be used
for tuning and controlling wave propagation by deformation.
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Wave propagation phenomena have been investigated
intensively because understanding of the phenomena is
of great importance for a large variety of applications.
Areas of application include nondestructive material test-
ing, acoustic mirrors, waveguides, acoustic filters, vibration
dampers, ultrasonic transducers, acoustic and optic cloak-
ing, subwavelength imaging, and photovoltaic devices.
Phononic and photonic metamaterials with periodic

microstructures have attracted considerable attention
[1–8]. The remarkable properties of the metamaterials
originate in their microstructure, a proper choice of which
may result in band gaps [1,9–17].
Soft metamaterials, due to their capability to sustain

large elastic deformations, open promising opportunities
of manipulating wave propagation by deformation.
Deformation can influence wave propagation in two ways:
first, as a material undergoes large deformation, its micro-
structure evolves; second, the presence of stress can influ-
ence wave propagation. Moreover, the material micro-
structure (geometry and constituent properties) can be tail-
ored to give rise to elastic instabilities within the internal
structure upon achieving critical strain or stress. This phe-
nomenon can be used to trigger sudden and reversible
structural pattern transformations [18,19], which can be
accompanied by changes in acoustic and optical properties
[20–22].
In this Letter, we specifically focus on the influence of

instability-induced transformations in interfacial layers on
wave propagation in finitely deformed materials. To this
end, we consider layered materials with discrete interfacial
layers of finite thickness with elastic modulus contrast
with the surrounding matrix layers. Upon deformation,
the interfacial layer will wrinkle upon reaching a critical

compressive strain. The wrinkle takes a sinusoidal wave-
form with characteristic normalized wavelength ~lcr¼
lcr=hðiÞ can be estimated by ~lcr¼πððð3−4νÞ=ð3ð1−νÞ2ÞÞ
ððμðiÞÞ=ðμðmÞÞÞÞ1=3, where ν is Poisson’s ratio, μ is shear
modulus, and hðiÞ denotes interfacial layer thickness
[19]. We use the superscripts ðÞðmÞ and ðÞðiÞ to denote
the quantities associated with matrix and interfacial layers,
respectively. The critical strain corresponding to the onset
of instabilities is ϵcr ¼ π2ðlcr=hðiÞÞ−2.
Examples of the formation of wrinkled interfacial layers

are presented in Fig. 1 for composites with μðiÞ=μðmÞ ¼
100 and interfacial layer volume fractions of cðiÞ ¼
hðiÞ=h¼0.02 (red) and 0.04 (black). The post-bifurcation
behavior is simulated by finite element analysis. The nor-
malized macroscopic stress (left axis) and normalized
wrinkled interface amplitude (right axis) ~A ¼ A=hðiÞ are
given as a function of compressive strain [Fig. 1(c)] .
The normalized mean stress is defined via ~σ ¼ σ̄11=μ̄,
where μ̄ ¼ cðmÞμðmÞ þ cðiÞμðiÞ. The dashed curve corre-
sponds to the stress-strain relation for the composite if
wrinkling were not to occur. When the compressive defor-
mation is applied, a bifurcation is seen in the stress-strain
curve upon reaching the critical strain, which triggers the
instability. At this point, a sudden change in microstructure
occurs and the wrinkled interfacial layers become visible
with the amplitude increasing rapidly with further defor-
mation. Compressive deformation leads to initiation and
rapid growth of the amplitude of the wrinkled interface,
creating a system of periodic scatterers, which reflect
and interfere with propagation of elastic waves. This
phenomenon allows control of wave propagation and fil-
tering of particular bands of frequencies by application of
deformation.
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Here, we analyze the propagation of elastic waves in
finitely deformed periodic materials. To this end, we con-
sider incremental small-amplitude motions superimposed
on a finitely deformed state [20]. Differently from a plane
wave, a wave propagating in a periodic structure is the
superposition of plane waves, which can be described
by the Bloch function [1,23]. Consequently, the small-
amplitude motions are implemented in terms of Bloch
waves uiðx; tÞ ¼ Uiðx; tÞ expðik · xÞ, where ui is the
displacement, k is the Bloch vector and Ui is a periodic
function subjected to the periodicity condition Uiðx; tÞ ¼
Uiðxþ a; tÞ with a being a lattice translation vector
[12,20,23]. To perform this analysis, we use the finite
element method, which allows us (i) to obtain the solution
for the deformed periodic composite after the bifurcation,
and (ii) then superimpose the Bloch-Floquet periodicity
condition on the deformed state and solve the eigenvalue
problem associated with the wave equations. For complete-
ness, the numerical solution was verified against exact
analytical solutions for finitely deformed infinite homo-
geneous and layered materials, and excellent agreement
was found. We define the direction of wave propagation
via angle φ as shown in Fig. 2.
The influence of interface wrinkling on wave propaga-

tion is shown in Fig. 3 which compares the dispersion

diagrams for (a) the undeformed state, where the applied
strain ϵ ¼ 0, to (b) those at the onset of wrinkling formation
ϵ≃ ϵcr, and to (c) those for a developed wrinkled state
ϵ > ϵcr. Figure 3 shows examples of dispersion diagrams
for various composites with different stiffness ratios
rμ ¼ μðiÞ=μðmÞ: different density contrast ratios rρ ¼
ρðiÞ=ρðmÞ, and different interfacial layer volume fractions
of cðiÞ to allow comparison of these effects. The normalized
frequency ~ω ¼ ωh

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðmÞ=μ̄
p

is reported. The dispersion dia-
gram of the undeformed structure appears in the top row.
The composites present in columns (1)–(3) and (4) exhibit
elastic instabilities at different levels of critical strain, in
particular, at ϵcr ¼ 0.040 08 and ϵcr ¼ 0.0086, respec-
tively. Consequently, we present the dispersion diagrams
for these cases at different strain levels (middle rows),
namely at ϵ ¼ 0.04 for composites in columns (1)–(3)
and ϵ ¼ 0.01 for column (4). Finally, we show the
dispersion diagrams for a developed wrinkled state in
the bottom row for strains of ϵ ¼ 0.048 for composites
in columns (1)–(3), and ϵ ¼ 0.017 for column (4). For com-
posites present in columns (1) and (2), the normalized
amplitudes of the wrinkles are ~A ¼ 0.2687 and 0.5075 at
ϵ ¼ 0.04 and 0.048, respectively. The corresponding ampli-
tudes for the composite (3) are 0.271 and 0.524, respec-
tively. For the composite (4), the amplitudes of the
wrinkles are ~A ¼ 0.522 and 1.058 at ϵ ¼ 0.01 and
0.017, respectively.
The dispersion diagrams show different branches of

wave propagation including transverse and longitudinal
waves. In our analysis, we specifically focus on identifying
complete band gaps, when both, longitudinal and trans-
verse waves, cannot propagate. The undeformed composite
does not filter waves in a direction along the interface at any
frequency; however, the deformed composites with
wrinkled interfaces exhibit clear band gaps [see columns
(1), (2), and (4) in line (b)]. The frequency range of the
band gaps is denoted by the grey filled area in Fig. 3.
Note that one-dimensional phononic crystals with flat
layers can never prevent wave propagation parallel to the
layers [24]. In contrast, the wrinkled interfaces introduce
variations of the mechanical properties in the direction
of wave propagation, and, consequently, secondary waves
are generated. The waves interfere with each other such that
for some combination of the material properties,

FIG. 1 (color online). Schematics of undeformed and deformed
periodic multilayered structures with interfacial phase volume
fractions (a) cðiÞ ¼ 0.02 and (b) 0.04. (c) Dependence of stress
vs strain and wrinkle amplitude vs strain. The stress-strain results
are given by the continuous black (cðiÞ ¼ 0.04) and red curves
(cðiÞ ¼ 0.02); the dashed curve is the solution for flat layers,
assuming no wrinkling. The dotted curves represent the evolution
of the normalized wrinkle amplitude (right axis). The stiffness
ratio of the phases is μðiÞ=μðmÞ ¼ 100.

ϕ

FIG. 2 (color online). Schematics of wave propagation direc-
tion with respect to interfacial layers.
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geometries, wave frequencies, and amplitudes, the reflec-
tance is such that the waves will not propagate. This situa-
tion corresponds to band gaps of forbidden frequencies as
reported in Fig. 3. We observe no band gaps for the
composite with low volume fractions of the interfacial
layers [column (3)], even when the wrinkles are well devel-
oped. Remarkably, we find that composites with identical
densities [column (2)] produce band gaps when the wrin-
kling interfaces are induced. Finally, for the composites
with a higher contrast in the stiffness of the phases, namely
rμ ¼ 1000 [column (4)], we observe that the band gap
appeared after wrinkle formation, but the band gap nar-
rowed with further deformation, whereas the band gap
broadened for the case with lower stiffness ratio.
The development of band gaps with deformation is

shown in Fig. 4 for composites with cðiÞ ¼ 0.04 and
rμ ¼ 100 with density ratios rρ ¼ 1 (left column) and 5
(right column). Figure 4 shows the evolution of the prohib-
ited frequency ranges as a function of strain for different
directions of wave propagation φ ¼ π=2, 0, and π=4 (from
top to bottom). For waves traveling along the layers,
φ ¼ π=2, the band gap that appears upon wrinkling initia-
tion shifts to a lower frequency band. The band gap widens
due to the evolution in scattering as the wrinkle waveform
amplitude and wavelength evolve. There is a change in the
band-gap evolution at ϵ≃ 0.045, when the band gap starts
shifting toward higher frequencies. For waves traveling in
the direction perpendicular to the layers (φ ¼ 0) and

rρ ¼ 5, there are two initial band gaps. The first band
gap, at higher frequencies, gradually widens with increas-
ing strain. The second band gap, of lower frequencies, rap-
idly narrows with the deformation until it closes at
ϵ≃ 0.005. This is followed by immediate reopening of
the band gap and further widening until ϵ≃ 0.0075, after
which the band-gap width remains constant. For the waves
traveling at φ ¼ 0 in the composite of rρ ¼ 1, one band gap
is observed. The band gap opens at ϵ≃ 0.018 and then rap-
idly widens until ϵ ¼ 0.021, after which it continues to
widen, although slowly. At ϵ≃ 0.04, the band gap
starts to narrow due to the decrease of the upper boundary,
while the lower boundary remains constant. For oblique
waves traveling at φ ¼ π=4, the opening and evolution
of band gaps are similar to that observed for the case
of φ ¼ π=2.
We showed that band gaps can be created in composites

with identical densities of the phases when the interfaces
take on a wavy topology. The case when both phases have
similar densities is of great interest due to the potential for
manufacturing light-weight polymer acoustic metamateri-
als. To highlight the role of the density contrast rρ, we
present the band gaps as functions of density contrast rρ
in Fig. 5. The examples are given for composites with
cðiÞ ¼ 0.04 and initial stiffness ratios rμ ¼ 100 (left col-
umn) and 1000 (right column). We consider deformation
at ϵ ¼ 0.048 (left) and 0.017 (right), where the wrinkled
interfaces are developed. The prohibited frequency

ε = 0

ε = 0.04

ε = 0.048

(a)

(b)

(c)

(2)
c(i) = 0.04, rµ =100, rρ = 5

(1)

ε = 0

ε = 0.01

ε = 0.017

c(i) = 0.04, rµ =100, rρ = 1
(3)

c(i) = 0.02, rµ =100, rρ = 5 c(i) = 0.04, rµ =1000, rρ = 5

(4)

FIG. 3. Dispersion diagrams showing normalized frequency response ~ω ¼ ωh
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðmÞ=μ̄
p

vs wave number for four composites:
cðiÞ ¼ 0.04, rμ ¼ μðiÞ=μðmÞ ¼ 100 and rρ ¼ ρðiÞ=ρðmÞ ¼ 5 [column (1)] and rρ ¼ 1 (column 2); cðiÞ ¼ 0.02, rμ ¼ 100 and rρ ¼ 5
[column (3)]; cðiÞ ¼ 0.04, rμ ¼ 1000 and rρ ¼ 5 [column (4)]. The top row is for undeformed states. The middle is for ϵ ¼ 0.04
[columns (1)-(3)] and for ϵ ¼ 0.01 [column (4)]. The bottom row is for ϵ ¼ 0.048 [columns (1)-(3)] and for ϵ ¼ 0.017 [column
(4)]. The waves propagate in an initial direction along the interface (φ ¼ π=2).
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domains are given for different directions of wave propa-
gation φ ¼ π=2, φ ¼ 0, and φ ¼ π=4 (from top to bottom).
For waves traveling at φ ¼ π=2 in the composite of
rμ ¼ 100, a band gap appears at rρ ¼ 1. The band gap
shifts toward lower frequencies with an increase of rρ.
For the normal wave propagation (φ ¼ 0), we observe a
rather narrow band gap at rρ ¼ 1. However, the band
gap widens significantly with an increase of rρ.
Additionally, two new band gaps opens at rρ ≃ 3.6 and
6, respectively. For oblique waves traveling at φ ¼ π=4,
the maximum width of the band gap is reported at
rρ ¼ 1. The band gaps gradually narrow with an increase
of rρ due to both decreasing of the upper boundary and
increasing of the lower boundary. The band gap closes
at rρ ≃ 10.
Composites with the higher stiffness ratio (rμ ¼ 1000)

exhibit a narrow band gap for wave propagation along
the layers (φ ¼ π=2). For propagation normal to the inter-
face (φ ¼ 0), the composite possesses a band gap that
broadens with increasing density contrast as well as the
emergence of a second band gap when the density ratio
exceeds 7. For oblique propagation (φ ¼ π=4), this
composite does not have a band gap.
We revealed transformation of wave propagation via

instability-induced interfacial wrinkling in composites with
interfacial layers. We demonstrated that the formation of
the wrinkling interfaces can be used to create band gaps
and filter undesirable frequencies. These frequency bands
are highly tunable by the material choice and the thickness
of layers and the distance between the layers. Since the
microstructure change is reversible, the phenomenon is also
tunable and reversible depending on the applied stress or
deformation. Consequently, we present a novel ability to

actively control wave propagation in layered materials.
Moreover, this ability applies to material layers with similar
or even identical densities of the phases.
Besides the propagation of elastic waves in media with

instability-induced interfacial wrinkling, the concept of
transforming the wave propagation extends further and
can be applied to development of switchable photonic crys-
tals. These optical structures are widely present in nature.
However, they are still a challenge to manufacture and are
even more challenging to actively control. The study
described in this Letter opens up a new prospect for advanc-
ing the technology for tunable photonic crystals. The simi-
larities in the phenomena of elastic and electromagnetic (in
particular, the optical case) wave propagation, point
towards the possibility of extending the idea to switchable
photonic crystals. Design of the tunable photonic structures
will require additional analyses due to the differences in the
phenomena; in particular, elastic waves propagate in longi-
tudinal and transverse modes (these are not pure modes, in
general), whereas the polarization of the electromagnetic
waves is transverse [25]. Layered materials with varying
mechanical and optical phase properties can be manufac-
tured even with ultrathin and subwavelength thicknesses
of the layers [26]. Mechanical loadings can be used to
induce and control the wrinkling patterns, which may give

FIG. 5. The prohibited frequency domain as a function of den-
sity ratio rρ for rμ ¼ 100 at post-bifurcated state of ϵ ¼ 0.045
(left) and for rμ ¼ 1000 at ϵ ¼ 0.017 (right) considering interfa-
cial volume fraction of cðiÞ ¼ 0.04. The wave propagation direc-
tions are φ ¼ π=2, φ ¼ 0, and φ ¼ π=4 (from top to bottom).

FIG. 4. The prohibited frequency domains and the amplitude
of the wrinkled interface as functions of applied strain. The initial
stiffness ratio is rμ ¼ 100, and density contrast ratio is rρ ¼ 1
(left) and 5 (right). The wave propagation directions are
φ ¼ π=2, φ ¼ 0, and φ ¼ π=4 (from top to bottom).
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rise to a variety of optical effects; for example, silvery iri-
descence around the eyes of squid (L. pealeii) due to the
wrinkling pattern of thin layers (80–130 nm [27]) may
be mimicked. Moreover, the effect can be further actively
controlled by varying the stress or deformation and, as a
result, changing the amplitude of the wrinkling interfaces.
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