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We explore the impact of weak disorder on the dynamics of classical particles in a periodically
oscillating lattice. It is demonstrated that the disorder induces a hopping process from diffusive to regular
motion; i.e., we observe the counterintuitive phenomenon that disorder leads to regular behavior. If the
disorder is localized in a finite-sized part of the lattice, the described hopping causes initially diffusive
particles to even accumulate in regular structures of the corresponding phase space. A hallmark of this
accumulation is the emergence of pronounced peaks in the velocity distribution of particles that should be
detectable in state of the art experiments, e.g., with cold atoms in optical lattices.
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Introduction.—Time-driven nonequilibrium dynamics is a
subject of major interest [1–5], covering many different
physical systems such as colloidal particles exposed to
periodically modulated ion chains [6], particles moving
along a filament with a hydrodynamic coupling to the
surrounding solvent [7], or cold polar atoms loaded into
optical lattices that are driven by periodic phasemodulations
of the applied laser beam [8–10]. A prototype example for a
nonequilibrium phenomenon in driven lattices is the cel-
ebrated “ratchet effect,” which is the appearance of directed
particle motion in the absence of biased forces due to a
breaking of certain spatiotemporal symmetries [11,12].
Whereas the aforementioned setups focus on globally acting
time periodic forces, it was recently demonstrated how
spatially varying ac forces introduce a plethora of effects
[13–17] such as the formation of density waves [16], the
patterned deposition of particles [15], or the possibility for
conversion processes between diffusive and ballistic motion
[16,17]. Moreover, long-range interactions have been
shown to lead to dynamical current reversals in the absence
of any parameter change [18]. In early works concerning
disorder in complex systems, it was highlighted that in the
presence of interactions and dissipation disorder may
stabilize soliton solutions [19] or cause synchronization
of coupled nonlinear oscillators [20]. In contrast, we
demonstrate in the present Letter that the combination of
disorder and driving in the absence of both interactions and
dissipation can lead to the emergence of regularmotion from
an originally chaotic and diffusive ensemble of particles
through a novel mechanism. Disorder-induced autocorre-
lations and pronounced changes of the velocity distributions
are found with major differences occurring for the cases of
global versus local disorder.

The driven lattice Hamiltonian.—We consider a one-
dimensional lattice, consisting of laterally oscillating
square barriers of width l and spacing L. Each barrier is
labeled by an index nb ∈ Z on which its potential height V

depends, i.e., V ¼ VðnbÞ. The classical Hamiltonian for
noninteracting particles is thus given by

Hðx; p; tÞ ¼ p2

2m
þ

X∞

nb¼−∞
VðnbÞ

× Θðl=2 − jx − X0;nb − dðtÞjÞ; (1)

where X0;nb is the equilibrium position of the nbth barrier
and dðtÞ ¼ Að cosðωtÞ þ sinð2ωtÞÞ is the driving law
yielding directed transport [11,12]. We note that the effects
and phenomena observed in this work do not rely on the
specific shape of the lattice potential.
Disordered lattices can be realized by “perturbing” some

barriers randomly, e.g., by setting VðnbÞ < V0 for some nb.
More precisely, we define a distribution σ∶ nb ∈ Z↦
X ∈ ð0; 1Þ, which assigns a random number to each barrier
and determines its potential height via

VðnbÞ ¼
�
V0 − ησðnbÞ; for σðnbÞ ≥ γ and jnbj<D

V0; else

(2)

where γ describes the relative amount of perturbed barriers,
η controls the perturbation strength, and D accounts for the
extension of the disorder region.
The focus of this work is on the regime of weak disorder

that is accounted for by choosing γ ¼ 0.9, and the remain-
ing parameters are fixed to m ¼ V0 ¼ ω ¼ 1.0, L ¼ 5.0,
η ¼ 0.9, A ≈ 0.57. Before we discuss the impact of dis-
order, let us briefly account for some of the main aspects of
the dynamics in the uniformly driven lattice.

Dynamics in the unperturbed system.—The Hamiltonian
given in Eqs. (1) and (2) contains the uniformly driven
lattice with VðnbÞ≡ V0 for all nb by setting D ¼ 0. As
described in detail in Refs. [14,17], such a setup features a
mixed phase space containing a “chaotic sea” at low kinetic
energies that is bounded by invariant curves and shows
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regular islands embedded in the chaotic sea. The strobo-
scopic Poincaré surface of section, where at times
t ¼ 2πn with n ∈ N velocity and position x modulus the
barrier distance L are recorded, is shown in Fig. 1(a) for the
parameters as mentioned above. Correspondingly, there are
two distinguished types of motion apparent: Either a
trajectory is located within the chaotic sea or it is located
within any of the regular structures. Opposite to the
diffusive motion in the chaotic sea the regular motion
for islands above or below v ¼ 0 preserves the sign of the
particle velocity, i.e., vðtÞvðtþ ΔtÞ > 0 for any t and Δt
and corresponds to ballistic motion.

Dynamics in the disordered system.—We now demonstrate
how the presence of disorder influences the previously
described dynamics in the driven lattice. A suitable
observable to distinguish between diffusive and ballistic
motion is the autocorrelation function, which as we shall
see below is altered significantly by the inclusion of
disorder. Velocity distributions represent a second valuable
tool to analyze the impact of disorder and are discussed
afterwards. The velocity autocorrelation function (VACF)

AjðkÞ ¼
1

k − j

Xk−j

i¼1

2viviþj

v2i þ v2iþj
; k > j (3)

relates the velocity of a particle after its ith collision vi
with its velocity after the (iþ j)th collision with one of
the barriers, and the normalization ensures that −1 ≤
AjðkÞ ≤ 1. On the one hand, if a particle moves diffusively
through the lattice, its velocity is allowed to switch its sign
and different terms of the sum can cancel each other. On the
other hand, if a particle moves ballistically, vi and viþj have
the same sign and, thus, the terms in Eq. (3) add up. Hence,
AjðkÞ is a useful quantity to distinguish between ballistic
and diffusive motion in the lattice. As a starting point, we
calculate the ensemble averaged VACF numerically for the
uniform setup, i.e., D ¼ 0 in Eq. (2), for j ¼ 105. For this
purpose, we propagate in total 106 trajectories for 100
different disorder realizations σðnbÞ. The initial conditions
are x ¼ 0 and a randomly chosen velocity with −0.1 <
v0 < 0.1 to ensure that all trajectories are initially located
within the chaotic sea of the unperturbed system. The
resulting VACF is shown in Fig. 1(b) and can be seen to
evolve with increasing collision number k to a small
nonzero value. This is a consequence of the directed
transport induced by the bichromatic driving, which is
accompanied by an asymmetric chaotic sea with respect to
v ¼ 0 implying a drift of the diffusive chaotic motion (see
Ref. [17] for details).
In the presence of global disorder, i.e., D → ∞, we

observe a much stronger increase of the VACF that is even
more pronounced for the two setups with localized dis-
order, as shown for D ¼ 500 and 104. Note that while the
VACF appears to saturate for both locally disordered
setups, there is no sign of saturation for the globally
disordered lattice. To ensure that the different behavior
in the cases of localized and global disorder is not an
artifact of the particular choice of the delay j, we show
additionally the VACFs for fixed k ¼ 5 × 106 as a function
of j in Fig. 1(c). Apparently, the increase of AjðkÞ does not
require any specific choice of the delay j but is present over
the entire investigated parameter regime.
Let us now investigate how the velocity distributions of

particle ensembles are influenced by the disorder. These
distributions ρðvÞ were obtained by propagating particle
ensembles in different setups containing globalized, local-
ized, or no disorder with initial conditions as before. After a
simulation time of t ¼ 106, the velocity of each particle
is recorded, yielding the distributions ρðvÞ as shown in
Figs. 2(a)–2(c). For the uniformly driven lattice [Fig. 2(a)],
we observe that all particles are confined within a velocity
interval −5≲ v≲þ5, and a further inspection reveals that
after a certain transient time of t ≈ 104, ρðvÞ becomes
stationary. This behavior is easily understood by inspecting
the phase space of the unperturbed system [Fig. 1(a)]: All
particles are initially located within the chaotic sea and are
occupying it uniformly after a transient time. Because the
chaotic sea is bounded by invariant curves, the velocity
distribution is bounded as well. The apparent dips in ρðvÞ,
e.g., at v ≈ −2, are caused by regular islands, i.e., parts of

(a)

(b) (c)

FIG. 1 (color online). (a) In black: stroboscopic Poincaré
surface of section of a driven lattice without disorder. For
parameters, see main text. Coloring: phase space occupation
of an ensemble at t ¼ 106 for localized disorder forD ¼ 104. (We
add the potential energy to particles within the barrier to avoid
discontinuities, which causes the blank rectangle.) (b) Depend-
ence of ensemble averaged VACFs AjðkÞ on the number of
particle-barrier collisions k for j ¼ 105. (c) VACF AjðkÞ as a
function of j for k ¼ 5 × 106. Setups: uniform lattice (black
straight line); global disorder (blue dashed line); localized
disorder for D ¼ 500 (red dotted line) and D ¼ 104 (green
dashed-dotted line).
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the phase space that are prohibited for chaotic trajectories
and, thus, lead to a reduced density of chaotic trajectories in
these velocity intervals.
For the globally disordered lattice [cf. Fig. 2(b)], the

pronounced dips as seen in Fig. 2(a) cease to exist.
Moreover, the time evolution of ρðvÞ [inset of Fig. 2(b)]
indicates that no stationary distribution is reached. On the
contrary, ρðvÞ spreads to higher and higher velocities as
time proceeds. In some sense, the effect of a broadening of
the velocity distribution appears to be reversed for the setup
of localized disorder with D ¼ 104 [Fig. 2(c)] where we
observe two pronounced peaks accompanied by smaller
ones. Similar to the uniformly driven lattice, ρðvÞ reaches a
stationary form after a transient time of approximately
t ≈ 2 × 105. Finally, we show the asymptotic velocity
distributions recorded at t ¼ 106 when almost all particles
have left the disorder region for different extensions of the
disorder region ranging from D ¼ 10 up to D ¼ 5 × 104 in
Fig. 2(d). Already for small values of D the emergence of
peaks is apparent and they become more populated by
particles as compared to the background as D increases. At
D≳ 102 the peaks at small energies start to gradually
disappear until at D≳ 104 only the two dominant ones
remain, which become broader and spread to higher
energies as D is enlarged further.

Particle accumulation in regular islands.—Let us now
explore the physical mechanism behind the observed
impact of disorder on the velocity distributions as well
as on the VACFs. We first discuss the case of global
disorder and explain the differences to local disorder
afterwards.
As argued above, the choice γ ¼ 0.1 ensures that most

barriers remain unperturbed. Hence, we can expect to gain
insight into the dynamical processes of the disordered

system by performing projections onto the phase space of
the unperturbed system (PSUS). In the disorder-free lattice,
trajectories belong either to the chaotic sea or to one of the
regular islands for all times. In a system with weak disorder,
the scattering of a particle off a barrier modified due to the
disorder can be interpreted as a hopping process in the
PSUS. The crucial observation is now that the correspond-
ing shift in phase space may transport the particle from the
chaotic sea onto a regular island of the PSUS, in which it is
trapped until a further collision with a disorder barrier
occurs and the particle may either reenter the chaotic sea or
remain within the island. Such an island entering event is
shown exemplarily in the inset of Fig. 3 where the velocity
as a function of time is shown for a single trajectory. While
the particle moves diffusively at early as well as at late
times, it follows a quasiperiodic orbit of a regular island
and, thus, moves ballistically for intermediate times. The
fact that the velocity distributions for the globally disor-
dered lattice [Fig. 2(b)] feature neither pronounced dips nor
peaks suggests that at the time when ρðvÞ is recorded both
the chaotic as well as the regular islands of the PSUS are
populated uniformly. At the same time, particles can
become faster than in the uniformly driven lattice by
entering regular spanning curves at velocities above the
chaotic sea. This leads to the spreading of ρðvÞ to
increasingly higher velocities [as seen in the inset of
Fig. 2(b)].
We now address the question why localized disorder

both leads to peaked velocity distributions and increases the
VACF. Figure 1(a), which shows the occupation of the
phase space on top of the PSUS for the ensemble at t ¼ 106

for localized disorder with D ¼ 104, reveals that peaks in
ρðvÞ as shown in Fig. 2(c) are caused by an accumulation
of particles within regular structures of the phase space of
the uniform part of the lattice. More precisely, the two
dominant peaks correspond to particles on invariant

(a) (b)

(c) (d)

FIG. 2 (color online). Velocity distributions ρðvÞ at t ¼ 106 for
uniform driving (a), global disorder (b), and localized disorder
with D ¼ 104 (c). (d) Velocity distributions at t ¼ 106 for
disorder extension D between 10 and 5 × 104. The inset in (b)
is the time evolution of ρðvÞ for the same setup as in (b) with
logarithmic color scaling for better visibility.

FIG. 3 (color online). Position (right ordinate, green dashed
line) and velocity (left ordinate, blue line) as a function of time for
a single trajectory. The horizontal red lines are at x ¼ �xD ¼
�5 × 104 and delimit the region of disorder. The inset is a zoom
into vðtÞ, indicating the entering and exiting processes of a
quasiperiodic orbit.
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spanning curves, whereas the smaller peaks are related to
particles in regular islands of the PSUS. In the following,
we identify two distinct mechanisms that both contribute to
the observed accumulation in regular structures.
Multiple entering of disorder region: Apparently, the

above described conversion processes from regular to
chaotic motion or vice versa can only occur for particles
that are still within the disorder region, that is, if
jxj < xD ≡DL. Once the particle passes xD, we have to
distinguish two different scenarios: Either the particle passes
xD while being in a regular structure of the PSUS or it is
located in the chaotic sea of the PSUS. In the former case, the
particle does not reenter the disordered region and, thus,
cannot leave its regular “host” because no further collisions
with perturbed barriers occur. Such an event is shown in
Fig. 3: The considered particle switches between diffusive
and ballistic phases until it eventually reaches xD within a
regular structure of the PSUS. Afterward, the particle
remains in the corresponding quasiperiodic orbit. If on
the other hand the particle crosses the edge of the disorder
region at xD while being within the chaotic sea of the PSUS,
it can cross this edge several times since the diffusive chaotic
motion can transport the particle back to the position xD.
Accordingly, it has several chances of being transformed into
a ballistic particle by means of a collision with a perturbed
barrier. Thus, the possibility to cross the edge at xD several
times as long as the particle remains chaotic is one of the
reasons why the majority of particles become regular in the
lattices with localized finite disorder.
Separation of length scales: Consider a particle located

near the center of the disorder region. As Fig. 3 illustrates,
such a particle undergoes both diffusive as well as ballistic
phases, whereas the average distance covered within a
diffusive phase, denoted by ld, is smaller than it is in a
ballistic phase, because the former includes frequent
changes in the sign of the velocity whereas the latter does
not. Consequently, the probability that a particle reaches the
edge of the disorder region xD within a ballistic phase can
be expected to be higher than it is for a diffusive phase.
Hence, this separation of length scales leads to an accu-
mulation of particles into regular structures of the PSUS if
xD ≫ ld, which is to a lower degree fulfilled for D ¼ 500

as it is for D ¼ 104 leading to a correspondingly lower
value of the VACF. Note that because particles perform
particularly long ballistic flights at high kinetic energies
(jvj≳ 4) this separation of length scales is the reason the
two peaks in Fig. 2(c) at these high energies are the most
prominent peaks.

Conclusions.—We have investigated the impact of dis-
order on the nonequilibrium dynamics of classical particles
in a one-dimensional driven lattice. The disorder causes
initially diffusive chaotic particles to enter regular regimes
of the phase space. As hallmarks of these processes, we
observed both the emergence of pronounced peaks in the
velocity distribution of particle ensembles as well as

synchronized particle motion if the disorder is localized
in a finite region of the lattice. Since none of the presented
phenomena requires any fine tuning of the system param-
eters and rely solely on the existence of a mixed phase
space, we believe that our findings are of relevance in
understanding the dynamics in different experimental
setups such as cold atoms in optical lattices [8,10,21].
In these experiments counterpropagating laser beams,
which are periodically phase modulated, provide a laterally
driven quasi-one-dimensional lattice potential. By employ-
ing a large detuning between the laser field and the
inner atomic transition, the Hamiltonian regime can be
reached, and finally, disorder can be introduced by super-
imposing an optical speckle field, as was done, e.g.,
in Ref. [22].
Relating the above used parameters to experimentally

relevant quantities yields, for a driven lattice experiment
with cold rubidium atoms in an optical lattice, that the ratio
of the driving frequency f and potential height V0 should
be f2=V0 ∼ 1ðMHz=ErÞ where Er is the recoil energy.
A possible realization would be f ¼ 10 MHz and
V0 ¼ 100Er, which are similar to the parameters that have
been used in Ref. [10], and thus, we believe that disorder-
induced regular behavior and the associated peaks in the
velocity distribution can be observed specifically in cold
atom but also in other setups.
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