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We consider a quantum Otto cycle for a time-dependent harmonic oscillator coupled to a squeezed
thermal reservoir. We show that the efficiency at maximum power increases with the degree of squeezing,
surpassing the standard Carnot limit and approaching unity exponentially for large squeezing parameters.
We further propose an experimental scheme to implement such a model system by using a single trapped
ion in a linear Paul trap with special geometry. Our analytical investigations are supported by Monte Carlo
simulations that demonstrate the feasibility of our proposal. For realistic trap parameters, an increase of the
efficiency at maximum power of up to a factor of 4 is reached, largely exceeding the Carnot bound.
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Heat engines are important devices that convert heat into
useful mechanical work. Standard heat engines run cycli-
cally between two thermal (equilibrium) reservoirs at
different temperatures T1 and T2. The second law of
thermodynamics restricts their efficiencies to the Carnot
limit, ηc ¼ 1 − T1=T2 (T1 < T2) [1]. Triggered by the
pioneering study of Scovil and Schulz-DuBois on maser
heat engines [2] and boosted by the advances in nano-
fabrication, an intense theoretical effort has been devoted to
the investigation of their properties in the quantum regime,
see, e.g., Refs. [3–11]. In particular, theoretical studies have
indicated that the efficiency of an engine may be increased
beyond the standard Carnot bound by coupling it to an
engineered (nonequilibrium) quantum coherent [12] or
quantum correlated [13] reservoir (see also the related
Refs. [14–17] for photocell heat engines). These stationary
nonthermal reservoirs are characterized by a temperature as
well as additional parameters that quantify the degree of
quantum coherence or quantum correlations. Themaximum
efficiency that can be reached in this nonequilibrium setting
is limited by a generalized Carnot efficiency that can surpass
the standardCarnot value [18]. Quantum reservoir engineer-
ing techniques are powerful tools that enable the realization
of arbitrary thermal and nonthermal environments [19].
Those techniques have first been experimentally demon-
strated in ion traps [20]. Recently, they have been used to
produce nonclassical states, such as entangled states, in
superconducting qubits [21] and atomic ensembles [22], as
well as in circuit QED [23] and ion trap systems [24].
In this Letter, we develop a general theory of a quantum

heat engine coupled to a squeezed thermal bath.We evaluate
both the efficiency and the efficiency at maximum power of
the engine. We show that the efficiency at maximum power
can be increased beyond the standard Carnot limit by
exploiting thenonthermal propertiesof the reservoir,without
questioning the universality of the general framework of
thermodynamics. Squeezing is a general concept in quantum

optics [25]. Itmaybecharacterizedby aparameter r such that
the phase-space quadratures of a state are, respectively,
multiplied by er and e−r [26]. Squeezed ground states of the
harmonic oscillator were first observed in photonic systems
[27] and extensively studied in Ref. [28]. Additionally,
phononic [29], number state [30], and spin state [31]
squeezing were respectively observed in ion systems and
Bose-Einstein condensates. Squeezed states are important
tools in high-precision spectroscopy [32], quantum infor-
mation [33], quantum cryptography [34], and the detection
of gravitational waves [35,36]. The properties of squeezed
thermal states were theoretically examined in Refs. [37–42].
The first experimental realization of squeezed thermal noise
using a Josephson parametric amplifier was reported in
Ref. [43]. However, the use of squeezed thermal baths
in quantum thermodynamics has been largely unexplored.
In the following, we investigate an Otto cycle based on a
time-dependent harmonic oscillator, a paradigm of quantum
heat engines (see Refs. [6–10] and references therein). To
analyze the effect of squeezing, we couple the engine to a
high-temperature squeezed thermal reservoir, while the low-
temperature reservoir is still purely thermal. We find that the
efficiency at maximum power rises exponentially with the
squeezing parameter r, surpassing the standard Carnot limit
and converging towardsunity exponentially. To illustrate our
results, we apply our general formalism to a single-ion heat
engine in a specially designed linear Paul trap coupled to
laser reservoirs [44]. We further present for the first time a
concrete experimental scheme to mimic the interaction with
a squeezed thermal reservoir by combining reservoir and
state engineering methods [45]. Monte Carlo simulations
with realistic trap parameters and laser interaction demon-
strate the experimental realizability of such a scheme with
current technology. We show that the single-ion engine can
run at maximum power up to an efficiency which is 4 times
larger than the efficiency obtained with two thermal reser-
voirs and a factor of 2 above the standard Carnot bound.
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Otto engine with squeezed reservoir.—We consider a
quantumOtto cycle for a time-dependent harmonic oscillator
that consists of four consecutive steps (expansion-heating-
compression-cooling) [6–10], as shown in the inset of Fig. 1.
During the expansion and compression phases, the frequency
of the oscillator is modulated between ω1 and ω2 > ω1.
Heating andcooling result from the coupling to twoheat baths
at inverse temperatures βi ¼ 1=ðkBTiÞ, (β1 > β2), where kB
is the Boltzmann constant and Ti the corresponding tem-
perature. The cycle starts in a thermal stateA, atω1 and at cold
inverse temperature β1, with an average energy,

hHiA ¼ ℏω1

2
coth

�
β1ℏω1

2

�
: (1)

During the initial isentropic compression from A to B, the
frequency increases from ω1 to ω2. This transformation is
unitary for an isolated systemand thevonNeumann entropy is
constant. The mean energy at point B can be calculated by
solving the Schrödinger equation for the driven quantum
oscillator and is given by [46,47],

hHiB ¼ ℏω2

2
Q�

1 coth

�
β1ℏω1

2

�
; (2)

where the parameter Q�
1 characterizes the speed of the

transformation. The system is then coupled to a squeezed
thermal reservoir at hot inverse temperature β2 and squeezing
parameter r, and, as a result, relaxes to a nondisplaced
squeezed thermal state with mean phonon number,
hnðβ2; rÞi ¼ hni þ ð2hni þ 1Þsinh2ðrÞ [41], where hni ¼
½expðℏβ2ω2Þ − 1�−1 is the thermal occupation number. We
assume the duration of this interaction to bemuch shorter than
the duration of the isentropic process, and thus the frequency
stays constant (corresponding to an isochoric process). The

mean energy at point C, hHiC ¼ ℏω2hnðβ2; rÞi, is increased
to [41],

hHiC ¼ ℏω2

2
coth

�
β2ℏω2

2

�
ΔHðrÞ; (3)

where ΔHðrÞ ¼ 1þ ð2þ 1=hniÞsinh2r. In the following,
wewill keep the inverse temperature β2 constant and vary the
amount of squeezing r, hence the energy of the state C (see
Fig. 2). During the following isentropic expansion, the
frequency is brought back to its initial value ω1, and the
mean energy at point D reads

hHiD ¼ ℏω1

2
Q�

2 coth

�
β2ℏω2

2

�
ΔHðrÞ: (4)

The cycle is closed by coupling the system to the cold thermal
bath. Because of the stochastic nature of this process (which is
again isochoric), it destroys any phase relation and thus
thermalizes the squeezed state. We stress that the above
expressions are valid for arbitrary frequency modulations:
Q�

i ¼ 1 for adiabatic andQ�
i > 1 for nonadiabatic compres-

sion or expansion [46–48].
Work is done by the oscillator during the compression

and expansion phases, whereas heat is exchanged with the
reservoirs during the thermalization steps. These quantities
can be computed using Eqs. (1)–(4) by evaluating the
energy differences during each individual stroke [44]. The
efficiency η of the engine is defined as the ratio of the net
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FIG. 1 (color online). Efficiency at maximum power η�, Eq. (6),
of the Otto engine plotted as a function of the squeezing
parameter r. Black, red, and blue lines (bottom to top) correspond
to the temperature ratio β2=β1 ¼ 0.9, 0.6, and 0.3 , respectively.
The dashed lines in the corresponding color denote the standard
Carnot efficiency for each temperature ratio. The inset shows the
energy-frequency diagram of an idealizedOtto cycle. Squeezing is
applied during the hot bath interaction between points B and C,
leading toan increaseofη�with r, approachingunityexponentially.

Radial frequency ω / 2π (MHz)

2.8 2.9 3.0 3.1 3.2

R
ad

ia
l e

ne
rg

y 
(1

0
-2

3  
J)

1.2

1.3

1.4

1.5

Axial position (µm)
−50 0 50 100

rad 

t 

+  

-  

 

x 

p 

x 

p 

x 

p 

x 

p 

C 

D 

B‘ 

B 

A 

FIG. 2 (color online). Comparison of a thermal Otto cycle of the
single ion heat engine (red, bottom) and a cycle with a hot
squeezed thermal state (blue). The corresponding phase-space
distributions of the ion are sketched next to points A, B’, C, and
D, showing the change in temperature of a thermal state (rota-
tional symmetric Gaussian distribution) and the squeezing of
those states (ellipses). The interactions with the hot thermal bath
(BB0) and the squeezing operation (B0C) are performed sequen-
tially to discriminate both effects in their dynamics. The squeez-
ing leads to a significant increase of the produced work (area of
the enclosed region). Inset: Squeezing operation applied between
points B0 and C. The radial trap frequency ωrad is parametrically
switched to higher and lower values.
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work produced per cycle to the energy absorbed from the
hot reservoir. Using Eqs. (1)–(4), we find

η ¼ 1 − ω1

ω2

cothðβ1ℏω1

2
Þ −Q�

2 cothðβ2ℏω2

2
ÞΔHðrÞ

Q�
1 cothðβ1ℏω1

2
Þ − cothðβ2ℏω2

2
ÞΔHðrÞ : (5)

Expression (5) is exact and valid for any temperature,
squeezing, and adiabatic or nonadiabatic frequency modu-
lation [44]. In the remainder, we will focus on adiabatic
modulation, Q�

i ¼ 1, which leads to the highest efficien-
cies. Note that the efficiency (5) is unaffected by the
squeezing in this situation. This is not the case for the
efficiency at maximum power which we determine next.
Since the power of an engine vanishes at maximum

efficiency, the efficiency at maximum power is the quantity
of prime interest for practical applications [1]. We maxi-
mize the power, given by the work produced by the engine
divided by the cycle time, with respect to the frequency
difference Δω ¼ ω2 − ω1; we keep all other parameters,
such as inverse temperatures β1;2, squeezing parameter r,
cycle time τ, and the initial frequency ω1, constant. In the
high-temperature limit, ℏβiωi ≪ 1, we find that power is
maximum when the frequencies satisfy the condition:
ω2=ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1ð1þ 2sinh2rÞ=β2

p
. As a result, the efficiency

at maximum power η� for adiabatic compression or
expansion is given by

η� ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2
β1ð1þ 2sinh2rÞ

s
; (6)

an expression which depends explicitly on the degree of
squeezing. For thermal reservoirs (r ¼ 0), we recover the
Curzon-Ahlborn efficiency, ηCA ¼ 1 − ffiffiffiffiffiffiffiffiffiffiffiffi

β2=β1
p

[49].
Remarkably, the efficiency at maximum power η� rises
with increasing squeezing r; it approaches unity exponen-
tially for large squeezing parameter (r ≫ 1),

η� ≃ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
β2
β1

expð−2rÞ
s

: (7)

Figure 1 shows the enhancement of the efficiency at
maximum power with increasing squeezing r for different
temperature ratios. While the Curzon-Ahlborn efficiency
ηCA is smaller than the Carnot limit (indicated by dashed
lines), we observe that η� may surpass it even at moderate
squeezing values. However, it does not exceed the gener-
alized Carnot efficiency [18,50] (see Fig. 3),

ηgenC ¼ 1 − β2
β1½1þ 2sinh2ðrÞ� ; (8)

which follows from the second law of thermodynamics
applied to this nonequilibrium situation. The latter can be
understood by noting that the standard Carnot efficiency is
an expression of the second law for one particular non-
equilibrium configuration: two thermal reservoirs at two

different temperatures. Equation (8) extends this result to a
more general nonequilibrium setting that involves one
thermal and one nonthermal reservoir.
Numerical simulations.—To support our analytical find-

ings, we consider the realistic proposal for an Otto heat
engine presented in Ref. [44]. This engine consists of a
single ion confined in a linear Paul trap and coupled to laser
reservoirs. In contrast to conventional Paul traps, the
radiofrequency electrodes that create the confining poten-
tial are tilted towards the trap axis with an angle θ. Because
of this geometry, the axial frequency ωax of the ion is fixed,
while the radial frequency ωradðzÞ is a function of the axial
position z. The latter property is used to implement
compression and expansion phases in the radial direction,
while the ion moves back and forth along the trap axis. On
the other hand, the work generated by the engine is stored
in the axial oscillation. We have performed semiclassical
Monte Carlo simulations of the Otto cycle using a
partitioned Runge-Kutta integrator [51], including laser
interaction (we used the typical realistic values:
ωrad ∼ 3ð2πÞ MHz, ωax ∼ 36ð2πÞ kHz and θ ¼ 20°). The
dynamics of the ion’s phase-space distribution are obtained
by simulating an ensemble of several hundreds of classical
trajectories, which follow the expected thermal phase
distribution caused by the stochastic nature of photon
scattering. To drive the heat engine, the ion is coupled
alternatingly to a hot and a cold heat bath, realized by
velocity dependent scattering forces of laser beams with
different detuning. An example of a cycle obtained with
two thermal reservoirs is shown in Fig. 2 (red cycle), as a
function of the axial frequency of the ion and its radial
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FIG. 3 (color online). Efficiency at maximum power η� given
by the generalized Curzon-Ahlborn efficiency (6) as a function of
the squeezing parameter r (red line). The region below the red
dashed line corresponds to all possible efficiencies in agreement
with the standard Carnot limit. The results of the Monte Carlo
simulations (black dots) demonstrate within the given trap
geometry that by squeezing the thermal state with r ≤ 0.4, the
efficiency can be increased by a factor of 4, which is 2 times
higher than the corresponding Carnot bound. The black dotted
line shows the generalized Carnot limit (8) for an engine
interacting with a hot squeezed thermal bath. The results shown
are performed at a temperature ratio of β2=β1 ¼ 0.88.
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position (which is experimentally accessible). In the pres-
ence of a hot squeezed thermal bath, the state of the ion
equilibrates to the temperature of the bath, but is addition-
ally squeezed during the interaction [39]. We mimic the
coupling to such a squeezed thermal reservoir by combin-
ing reservoir engineering (for the thermal component) and
state engineering (for the squeezed component) [52].
Squeezing of the state of the ion is implemented by
modulating the radial confining potential at double the
trap frequency [53,54]. To ensure that an increase of
efficiency can only be attributed to the squeezed state,
the squeezing operation is performed in such a manner that
the mean value of the potential energy is not affected. To
this aim, the radial trap frequency ωrad is first increased to
ω0
rad ¼ ωrad þ Δω for a quarter of a radial oscillation

period. Then the frequency is lowered to ω0
rad ¼ ωrad −

Δω for a quarter of a radial oscillation period, before it is
returned to its initial value ωrad (see inset in Fig. 2). Since
the total frequency change is zero, no work is performed by
the squeezing operation [55]. We numerically simulate
engine cycles with different Δω to achieve different
squeezing parameters r of the state of the ion. In order
to analyze the influence of the thermal and the nonthermal
part of the reservoir interaction separately, we simulated the
coupling to the squeezed thermal bath in two consecutive
steps: first by heating the state of the ion, followed by a
squeezing operation. This leads to cyclic processes as shown
in Fig. 2, where a cycle including a squeezed thermal bath
(blue cycle) is compared to that employing a thermal bath
with the same temperature ratio (red cycle), demonstrating
the increase in energy due to the squeezing operation.
Figure 3 shows the resulting efficiencies, computed with
Eq. (5) with frequencies obeying the optimality condition,
for different squeezing parameters at a ratio of the bath
temperatures of β1=β2 ¼ 0.88: good agreement with the
theoretical prediction formaximumpower (6) is attained.We
observe that for a squeezing parameter of 0.4 the efficiency is
quadrupled, while reaching an efficiency two times higher
than the standardCarnot limit. To achieve comparablevalues
with a thermal bath interaction, while maintaining a maxi-
mized power output, an increase of the temperature ratio by
70% would be needed, while having a power output still
35% lower than the engine employing squeezing.
Concept of the experimental realization.— Let us now

describe how the squeezed thermal state simulated above
could be realized experimentally in an ion trap. Thermal
reservoirs at different temperatures can be engineered via
Doppler cooling, the Doppler temperature being adjusted
by employing electromagnetically induced transparency
cooling and changing the line shape through tuning of the
laser parameters [56,57]. Tailored electrical noise on the
trap electrodes can also be employed to efficiently heat
the ion [58]. Squeezing of the ground-state wave function
of a trapped ion was first demonstrated using resolved
sideband excitation on the second motional sideband [29].

However, this approach requires a system initially in the
ground state and long interaction times. As described
above, another way to realize squeezing is to change
suddenly the harmonic potential at double the trap fre-
quency [53,54]. This leads to an elliptical deformation of
the phase space distribution of the thermal state (see Fig. 2)
and thus squeezes the state of the ion.
To our knowledge, such a scheme to achieve squeezed

states has never been implemented experimentally. We
propose to make use of the tapered geometry of our setup,
as it allows to change the radial confinement by shuttling
the ion in the axial direction. Thus, to squeeze the radial
state of the ion, the latter can be driven along the trap axis at
double the radial trap frequency. Recent studies have shown
that fast transport of an ion along the trap axis on a sub-μs
time scale is possible without additional heating [59]. As
the frequency of this modulation is 2 orders of magnitude
higher than the axial resonant frequency, the two oscil-
lations can be easily separated. The proposed procedure
avoids the use of an additional static potential to change the
radial confining, as it could lead to parametric excitation of
coherent oscillations. Those oscillations would indeed hide
the signature of the squeezed state and perturb the exper-
imental sequence for the heat engine cycle.
In order to run atmaximumpower, the engine should obey

the optimality condition relating the frequencies of the
oscillator to the temperaturesof the reservoirs.Themaximum
ratio ω2=ω1 is limited by the opening angle θ of the funnel
shapedpotential and by amaximumamplitudea for the axial
coherent oscillation. Considering realistic trapping poten-
tials, this amplitude is chosen to be smaller than a < 1 mm
[60]. These constraints limit the achievable squeezing
parameters to r < 0.6 at maximum power. For the charac-
terization of the resulting squeezed states, we may employ
sideband spectroscopy and Raman transitions with standing
light fields [29,61,62]. The efficiency can be obtained from
measuring the vibrational energy in the axial mode.
Conclusions.—We have shown that the efficiency at

maximum power of a quantum Otto engine can be
dramatically enhanced by coupling it to a squeezed thermal
reservoir. While standard heat engines interact with thermal
baths which are only characterized by their respective
temperatures, the use of nonthermal baths offers more
degrees of control and manipulation, such as the amount of
squeezing, that can be exploited to increase the work
produced. Our findings pave the way for a first exper-
imental demonstration of the usefulness of reservoir and
state engineering techniques in quantum thermodynamics
and the realization of more efficient nanoengines.
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