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We reveal universal dynamical scaling behavior across adiabatic quantum phase transitions in networks
ranging from traditional spatial systems (Ising model) to fully connected ones (Dicke and Lipkin-Meshkov-
Glick models). Our findings, which lie beyond traditional critical exponent analysis and adiabatic
perturbation approximations, are applicable even where excitations have not yet stabilized and, hence,
provide a time-resolved understanding of quantum phase transitions encompassing a wide range of
adiabatic regimes. We show explicitly that even though two systems may traditionally belong to the same
universality class, they can have very different adiabatic evolutions. This implies that more stringent
conditions need to be imposed than at present, both for quantum simulations where one system is used to
simulate the other and for adiabatic quantum computing schemes.
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Scaling is ubiquitous in nature, with critical exponents
being used to characterize universal phase transition
phenomena in both equilibrium and nonequilibrium sys-
tems [1]. Scaling functions go beyond critical exponents by
incorporating richer information about the dynamics of the
underlying many-body system, including finite-size effects,
and hence extending the range of validity over which
theoretical predictions can describe empirical data [2]. In
the field of critical phenomena, much attention has recently
been directed to adiabatic quantum phase transitions
(QPTs). In addition to their fundamental role as zero-
temperature many-body quantum phenomena [3], QPTs
represent a key ingredient of current quantum computation
schemes [4,5].
Recent studies show that as a QPT phase boundary is

crossed slowly in models with finitely connected lattices
[6–11], the short-range interaction allows a correlation
length to be defined and, hence, scaling to be examined
through the Kibble-Zurek mechanism (KZM) [6,12].
However, an implicit limiting assumption of the KZM is
that adiabatic evolution holds except for a small threshold
around the critical point, during which spatial defects in the
order parameter are created and power-law relations
emerge, defined by critical exponents. For slower quench
rates, adiabatic perturbation theory (APT) can be invoked
instead and excitations predicted in terms of quasiparticles
[9,13]. However, totally connected lattice models such as
the Dicke model (DM) and the Lipkin-Meshkov-Glick
model (LMGM) [14] have no spatial order parameter and,
hence, lack a clear connection to existing theories such as
KZM. This may explain the lack of general results to date
for the adiabatic QPT regime, with the exception of bosonic
excitation estimates in the DM using simplifying mean-
field and rotating wave approximations [15], scaling of

final excitations in the LMGM [16], and dynamical
characterizations of the QPT through a monochromatic
modulation of the annealing parameter [17].
In a QPT, critical exponents are extracted from the

power-law behavior in the thermodynamic limit (TL), of
equilibrium quantities such as energy gaps and suscep-
tibilities around the quantum critical point (QCP) [6].
However, when finite-size scaling is considered, continu-
ous functions emerge at the phase boundary. Here we show
that, contrary to common belief, these critical functions—
but not critical exponents—provide a unified description of
QPT dynamics, as encoded by nonadiabatic indicators such
as heating and ground-state fidelity. Furthermore, they
encompass both finite-range [e.g., transverse field Ising
model (TFIM)] and fully connected systems (e.g., DM and
LMGM [18]) and, hence, overcome the limitations of KZM
and APT. In addition to applications in adiabatic quantum
computing [4,5], QPTs have been experimentally realized
using ultracold atomic systems [19,20]. By revealing
continuous-time details of the size-independent dynamical
behavior of quantum many-body systems, our analysis
goes beyond critical exponent analyses such as KZM and
connects to studies of avalanchelike events across classical
phase boundaries [2]. KZM-like and an APT-like regime
are both naturally incorporated in and illuminated by this
new framework. We find that the traditional universality of
critical exponents is insufficient to describe the analogous
dynamical evolutions of different models, thereby casting
doubt on an implicit assumption of quantum simulations
[21] in which particular models are taken to act as
experimental surrogates of each other.
We focus on three models for which experimental

realizations exist or have been proposed [22]. Each
features N qubits with differing interaction connectivities

PRL 112, 030403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

24 JANUARY 2014

0031-9007=14=112(3)=030403(5) 030403-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.030403
http://dx.doi.org/10.1103/PhysRevLett.112.030403
http://dx.doi.org/10.1103/PhysRevLett.112.030403
http://dx.doi.org/10.1103/PhysRevLett.112.030403


(Fig. 1 insets). The following generic, dimensionless,
time-dependent Hamiltonian (ℏ ¼ 1) describes the TFIM
and LMGM:

ĤðtÞ ¼ −XN
i¼1

σ̂ðiÞz − λðtÞ þ 1

Ns

X
hi;ji

σ̂ðiÞx σ̂ðjÞx ; (1)

where fσ̂g are Pauli matrices and hi; ji denotes pairs of
interacting qubits. We choose the interaction strength λðtÞ
as the annealing parameter. In the TFIM, only pairs of
nearest neighbors in a circular lattice interact, whereas in
the LMGM all pair interactions are present. At λ ¼ 0 in the
TL, the system is at the QCP [3,23], where a minimum-
value energy gap arises between the ground state and the
first excited accessible state.Ns in the denominator normal-
izes the interaction parameter according to size for the
LMGM; s ¼ 0 in the TFIM, while s ¼ 1 in the LMGM.
Like the LMGM, the DM has a totally connected lattice,
but the qubit-qubit interaction is mediated by a boson
mode: when the qubits and boson mode are in resonance,
the Hamiltonian becomes

ĤðtÞ ¼
XN
i¼1

σ̂ðiÞz þ â†âþ λðtÞ þ 1

2
ffiffiffiffi
N

p ðâ† þ âÞ
XN
i¼1

σ̂ðiÞx (2)

where â† (â) is the mode’s creation (annihilation) operator.
The QCP in the TL is also at λ ¼ 0 [24].
To describe the crossing of the QPT, we show a simple

case in which the annealing parameter evolves linearly as
λðtÞ ¼ υt since it leads to relatively simple formulas,
though we stress that extension to any power-law time
dependence is straightforward (Supplemental Material
[25]). We start in the ground state jφ0ðtiÞi with λðtiÞ ¼−1 at “negative” time ti ¼ −υ−1 [i.e., the zero of time is
defined as the instance where the system passes through
λðtiÞ ¼ 0]. The systems in Eqs. (1) and (2) evolve with a

time-dependent state jΨðtÞi across the QCP, until positive
time tf where λðtfÞ ¼ 1. For slow enough quench, the
system should end in a final ground state jφ0ðλðtfÞÞi
representing perfect adiabatic evolution. However, the
QCP hinders the many-body system from achieving this
result, since the minimal energy gap makes it easy for the
system to jump out of the ground state. Because this gap
gets smaller as the system size increases, ever slower
quenches are necessary to keep the system in the ground
state. Hence, the fundamental effect of the crossing of
QPTs is the loss of adiabatic evolution. We employ two
indicators to probe this result: (1) Ground-state fidelity
p0ðtÞ ¼ jhφ0ðtÞjΨðtÞij2 measuring the overlap between
the actual dynamical state jΨðtÞi and jφ0ðtÞi. It lies in
the interval 0 ≤ p0 ≤ 1 and has its maximum value
for perfect adiabatic evolution. (2) Heating QðtÞ ¼
hΨðtÞjĤðtÞjΨðtÞi − E0ðtÞ; which is always non-negative,
and for adiabatic evolution is zero [26]. [E0ðtÞ is the
instantaneous ground-state energy]. Details of the calcu-
lation are shown in the Supplemental Material [25].
Figure 1 shows the heating QðtÞ for λ ∈ ½−1; 1�. For

λ < 0, the behavior at a given υ is independent of size, with
virtually no loss of adiabaticity provided υ is small enough
[13]. The stronger heating behavior that emerges above the
QCP results from excitations forming, following a scaled
velocity Λ. The almost vertical step around λ ¼ 0 shows
that the evolution is essentially adiabatic, except for the
narrow interval around the QCP where the major excita-
tions are formed. Since the important aspects of the
quenching are defined around the QCP, we analyze the
system’s state in terms of instantaneous eigenstates

jΨðtÞi ¼
X
n¼0

anðtÞe−i
R

t

t0
Enðt0Þdt0 jϕðnÞ

λðtÞi; (3)

where ĤðtÞjφðnÞ
λðtÞi ¼ EnðλðtÞÞjφðnÞ

λðtÞi for every time t. The
anðtÞ evolution follows

FIG. 1 (color online). Time evolution of heating QðtÞ for (a) TFIM, (b) LMGM, and (c) DM. Insets show how the qubits interact in
these three models. In each panel, we present results for three different scaled annealing velocities Λ (different colors) and two system
sizes: TFIM, continuous lines (N ¼ 160) and symbols (N ¼ 80); LMGM, continuous lines (N ¼ 211) and symbols (N ¼ 29); DM,
continuous lines (N ¼ 29) and symbols (N ¼ 28). Notice that for well inside the ordered phase (λ > 0) for arbitrarily connected models,
curves with the same Λ but different size N collapse.
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danðλÞ
dλ

¼
X
m≠n

eiυ
−1ϕðNÞ

n;mðλÞχðNÞ
n;mðλÞamðλÞ; (4)

where ϕðNÞ
n;mðλÞ≡ R

λ
0 Δ

ðNÞ
n;mðλ0Þdλ0, which is the integral of the

energy gap between eigenstates n and m. The transition

amplitudes χðNÞ
n;m ≡−hφðnÞ

λ j d
dλ ðjφðmÞ

λ iÞ can be written as

χðNÞ
n;mðλÞ ¼ ½VðNÞ

n;mðλÞ�=½ΔðNÞ
n;mðλÞ� whenever eigenstates n

and m are nondegenerate, and VðNÞ
n;m are the matrix elements

of the interaction part of the Hamiltonian, mediated by λ.
The superscript (N) indicates that all the functions depend
on the system size. Equation (4) is usually the central part
of the adiabatic theorem [27], which states that if
υ ≪ jΔn;m=χn;mj, then fang remain constant. For suffi-
ciently slow annealing, this is satisfied outside the QCP
region, implying that only the eigenstates that reach a zero
gap in the TL are relevant for the loss of adiabaticity. It is
at this point that dynamical critical functions enter the
picture, since χn;m and Δn;m obey a scaling relation when
jλj ≪ 1 [9,23,28]

χðNÞ
n;mðλÞ ¼ N1=νCn;mðxÞ; (5)

ΔðNÞ
n;mðλÞ ¼ N−zDn;mðxÞ; (6)

where x≡ N1=νλ with ν and z determined through the
power-law behavior in the TL [24,3]. Figures 2(a) and 2(b)
present these critical functions between the ground and
first-excited states and show how they start matching the
TL power-law behavior for sufficiently large N and x. It
follows that ν ¼ z ¼ 1 for the TFIM and ν ¼ 3=2 and z ¼
1=3 for DM and LMGM [3,29].
Our main result is that the evolution in Eq. (4) can now

be cast in size-independent form

danðxÞ
dx

¼
X
n≠m

eiΛ
−1=μΦn;mðxÞamðxÞCn;mðxÞ; (7)

where the scaled velocity Λ ¼ Nυμ, the dynamical phase
difference Φn;mðxÞ ¼

R
x
0 Dn;mðx0Þdx0, and μ ¼ ν=ð1þ zνÞ.

Equation (7) predicts universal results in terms of excitation
probabilities pn ≡ janj2 and the ground-state fidelity. Since
the energy spectrum has a regular behavior, the heating will
also be universal since Q≡P

npnΔn;0. This prediction is
confirmed in Fig. 3 with both adiabatic quantifiers behav-
ing in a size-independent manner across the critical region.
We note that the collapse only occurs during and after the
critical threshold, because it is around the QCP that the
adiabatic indicators are significantly affected, and it is in
this region that universal functions exist. Once the QCP is
passed (λ > 0 stage), the evolution is again essentially
adiabatic and the accumulated nonadiabatic effects of
crossing the critical threshold remain dominant, clamping
the subsequent collapsed evolution. Therefore, our results
show that by generalizing from critical exponents to critical
functions, we expand the traditional description focused on
scaling at a fixed final value of λ as in Fig. 1, to a complete
temporal collapse picture as shown in Fig. 3 around
the QCP.
This new picture includes well-known results predicted

by KZM and APT as special cases, since both can
be expressed as power-law dependencies at the end of
the quenching process [16]. In the lower velocity APT
regime where there is low probability of leaving the ground
state, the following approximation holds for n ≠ 0:

anðλÞ ≈
Z

λ

−1
eiυ

−1ϕn;0ðλ0 Þχn;0ðλ0 Þdλ0
: (8)

Since the integrand is only non-negligible around the QCP,
it follows that janj ∼ υ, for which pn ∼ υ2 and, hence,
Qf ∼ υ2. The higher velocity KZM regime is characterized
by excitations being large enough to discard APT, replacing
it by an adiabatic-impulse-adiabatic approximation in
which the size of the threshold at which major excitations
are created is defined by a definite time tK or, equivalently,
a critical value of xK ¼ υN1=νtK .
In the traditional KZM, as is the case of the TFIM,

a healing time has been directly related to the inverse
energy gap [6], making tKΔðtKÞ ¼ tkðυtKÞνz ∼ 1 and then

FIG. 2 (color online). Universal behavior of finite-size critical
functions (a) C1;0 and (b) D1;0 as defined in Eqs. (5) and (6).
Symbols show results for system size N while continuous curves
are power-law predictions in the TL. (Thick red line is for both
DM and LMGM. Thin black line is for TFIM). Scales for the DM
and LMGM are given at the left bottom and right top, respec-
tively, and show that the critical functions for both models have
the same shape since they belong to the same universality class.
Horizontal scale for the TFIM is at the top, while the vertical scale
is not present but goes up to 25 in (a) and 0.25 in (b).
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xK ∼ Λ1=ν. With this estimate, an adiabatic indicator such as
heating can be predicted throughQf ∼DðxKÞ ∼ Λz. For the
TFIM (z ¼ 1), this KZM prediction has been confirmed
[7]. By stark contrast, totally connected models do not
match this estimate: instead of an exponent 1=3, a scaling
Qf ∼ Λ3=2 has been found [16]. However, Fig. 2(a) reveals
that in the λ > 0 phase, there is an anomalous x−1=4
dependence caused by a divergent χ ∼ N1=2 transition
amplitude [29]. Furthermore, in the λ < 0 phase, an x−1
dependence is present. Such exponents are specific to
infinite dimensional lattices such as the LMGM and
DM, and this difference is not taken into account in
the KZM.
The failure of the KZM prediction for LMGM and DM

highlights the accuracy of a dynamical function approach
as compared to power-law relations based on critical
exponents. Dynamical critical functions provide a full
time-resolved picture of dynamical scaling in the near-
adiabatic regime, even around the critical threshold where
excitations have not yet stabilized—hence, understanding
their properties is crucial for the design and cross-checking
of annealing schemes in quantum simulations. The fact that
the curves for LMGM and DM in Figs. 2(a) and 2(b) have
essentially the same shape might erroneously be taken as
sufficient justification for using one as a quantum simu-
lation of the other—however, this is not true. No matter
how a dynamical curve in Fig. 3(b) is scaled, its shape
will never completely match any curve of Fig. 3(c).
Instead, a thorough examination of Eq. (7) reveals that
equivalence between both near-adiabatic evolutions can
only be achieved if the functions fCn;mðxÞg scale as
CDM
n;mðαxÞ ¼ α−1CLMGM

n;m ðxÞ, which is a stringent condition
that is undetectable through critical exponent analysis. In
short, although equilibrium equivalence between systems
around the QCP can be accomplished just by having
identical critical exponents, achieving dynamical equiva-
lence requires further tuning of model parameters, thereby

partitioning the traditionally static universality classes into
subsets of dynamically equivalent systems.
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