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A periodically driven quantum Hall system in a fixed magnetic field is found to exhibit a series of phases
featuring anomalous edge modes with the “wrong” chirality. This leads to pairs of counter-propagating
chiral edge modes at each edge, in sharp contrast to stationary quantum Hall systems. We show that the pair
of Floquet edge modes are protected by the chiral (sublattice) symmetry, and that they are robust against
static disorder. The existence of distinctive phases with the same Chern and winding numbers but very
different edge state spectra points to the important role played by symmetry in classifying topological
properties of driven systems. We further explore the evolution of the edge states with driving using a
simplified model, and discuss their experimental signatures.
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Cyclic time evolutions of quantum systems are known to
have interesting topological properties [1,2]. Several
groups recently showed that periodic driving can turn an
ordinary band insulator (superconductor) into a Floquet
topological insulator (superconductor) [3–11]. This pro-
vides a powerful way to engineer effective Hamiltonians
that stroboscopically mimic stationary topological insula-
tors [4,5,12]. Moreover, a large class of topological
phenomena in periodically driven many-body systems is
unique and has no stationary counterparts. An early
example is Thouless’s one-dimensional charge pump,
where he showed that the charge transport is quantized
and related to a topological invariant [13]. Other topologi-
cal invariants for the time evolution operator in two and
three dimensions have been constructed recently [3,5,10].
Yet a systematic classification of these invariants analogous
to the periodic table of symmetry protected topological
phases [14,15] is still to be achieved.
In this Letter, we identify new topological phenomena in

a lattice integer quantum Hall (QH) system under cyclic
driving with period T. For fixed magnetic field, variations
of the driving parameter induce topological phase transi-
tions where the Chern numbers of the quasienergy bands
change. We find multiple phases of the driven QH system
featuring counter-propagating chiral edge modes at each
edge, and show they are robust against disorder. In
particular, there appear “π modes”, pairs of edge modes
with opposite chirality at quasienergy π=T. These anoma-
lous edge modes differ from those found previously in
other driven two-dimensional (2D) lattice models, where
the edge modes at quasienergy π=T all propagate in the
same direction and, subsequently, their number can be
inferred either from the Chern number or the winding
number [5,10]. Here, these known topological invariants
cannot predict the number of edge modes of each chirality,

but only their difference. For example, we find two phases
(phase A and D below) having the same set of Chern and
winding numbers but very different edge state spectra. Our
analysis suggests that symmetry of the time evolution
operator has to be included to fully characterize and
understand the topological properties of driven systems.
Our work is motivated by recent experimental achieve-

ments of an artificial magnetic field for ultracold atoms
[16,17] and temporal modulation of optical lattices [18,19].
We consider a model consisting of (spinless) fermionic
atoms loaded onto a square optical lattice. Each site is
labeled by vector r ¼ nx̂þmŷ, where n, m are integers, x̂
(ŷ) is the unit vector in the x (y) direction, and the lattice
spacing a is set to be the length unit. The tight binding
Hamiltonian has the form

H ¼ −Jx
X
r

jrþ x̂ihrj − Jy
X
r

jrþ ŷiei2πnαhrj þ H:c:

(1)

Here, jri is the Wannier state localized at site r. Jx (Jy) is
the nearest neighbor hopping along the x (y) direction. We
assume a uniform synthetic magnetic field B is applied in
the −z direction, and work in the Landau gauge Ax ¼ 0,
Ay ¼ −Bx. The flux per plaquette, in units of the flux
quantum Φ0, is α ¼ −Ba2=Φ0. Field B gives rise to the
Peierls phase factor ei2πnα in the hopping. For static Jx, Jy,
H is the well known Hofstadter model [20].
We investigate a class of periodically driven quantum

Hall systems described by H above, but with Jx and Jy
being periodic functions of time t. We will focus on the
following driving protocol
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JxðtÞ ¼ Jx; JyðtÞ ¼ 0; 0 < modðt; TÞ < τ

JxðtÞ ¼ 0; JyðtÞ ¼ Jy; τ < modðt; TÞ < T: (2)

Namely, within one period T, the hopping along x is turned
on during the interval (0, τ), while the hopping along y
is turned on during the interval (τ, T). We then have
two independent driving parameters θx ¼ Jxτ=ℏ, θy ¼
JyðT − τÞ=ℏ. While it is hard to achieve in solid state
systems, temporal modulation of Jx or Jy is straightforward
to implement for cold atoms in optical lattices, e.g., by
simply tuning the intensity of the laser. In the limit τ → T
and ðT − τÞJy → const, the driving protocol becomes

JxðtÞ ¼ Jx; JyðtÞ ¼ JyT
X
j

δðt − jTÞ; (3)

i.e., the y hopping is only turned on when t ¼ jT, with j
any integer. In this limit, θx ¼ JxT=ℏ, θy ¼ JyT=ℏ. We will
simplify refer to systems described by Eqs. (2) or (3) as
kicked quantum Hall systems, because Eq. (3) resembles
the well studied kicked rotors [11].
The time evolution operator of the system, defined by

jψðtÞi ¼ UðtÞjψð0Þi, has the formal solution UðtÞ ¼
T exp½−i R t

0 Hðt0Þdt0�, where T denotes time ordering
and we set ℏ ¼ 1 throughout. The discrete translation
symmetry HðtÞ ¼ Hðtþ TÞ leads to a convenient
basis fjϕlig, defined as the eigenmodes of Floquet
operator UðTÞ,

UðTÞjϕli ¼ e−iωlT jϕli:
Here the quasienergy ωl, by definition, is equivalent to
ωl þ 2pπ=T for any integer p and lives within the
quasienergy Brillouin zone (QBZ), ω ∈ ½−π=T; π=TÞ.
For rational flux α ¼ 1=q, U is a q × q matrix in momen-
tum space and there are q quasienergy bands. For conven-
ience, we label the lowest band within the QBZ with l ¼ 1,
and the subsequent bands at increasingly higher quasie-
nergies with l ¼ 2; 3;…; q. Correspondingly, we call the
gap below the lth band the lth gap. For example, the
gap around �π=T is the first gap. The Chern number for
the lth quasienergy band can be defined analogous to the
stationary case [21]

cl ¼ i
2π

Z
dkxdky½∂kxϕ

�
lðkÞ∂kyϕlðkÞ − c:c:�;

where the integration is over the magnetic Brillouin zone,
and ϕlðkÞ is the lth eigenwave function of Uðk; TÞ.
Figure 1 displays four representative quasienergy spectra

of a finite slab of length L in the x direction under periodic
driving (2). As in static QH systems, we observe edge states
forming within the quasienergy gaps. Consider the left edge
(x ¼ 0) and let us denote the number of chiral edge modes
propagating in the ŷ (−ŷ) direction by nþl (n−l ). For driven
2D systems, the Chern numbers are generally insufficient to

predict ðnþl ; n−l Þ. Instead, as shown by Rudner et al. [10],
the net chirality of the edge modes inside the lth quasie-
nergy gap, wl ≡ nþl − n−l , is given by the following
winding number

wl ¼
Z

dkxdkydt

24π2
ϵμνρTr½ðu−1∂μuÞðu−1∂νuÞðu−1∂ρuÞ�:

Here μ, ν, ρ ¼ 1, 2, 3 corresponds to kx, ky, t, respectively,
and uðk; tÞ is a smooth extrapolation of Uðk; tÞ [10]

uðk; tÞ ¼ Uðk; 2tÞθðT=2 − tÞ þ e−iHðkÞ2ðT−τÞθðt − T=2Þ;

where HðkÞ ¼ −ði=TÞ log UðTÞ is the effective
Hamiltonian with the branch cut of the logarithm chosen
at quasienergies within the lth gap. Reference [10] showed
that the Chern numbers can be inferred from the winding
numbers by cl ¼ wlþ1 − wl.
The quasienergy spectra (Fig. 1) manifest a few nice

symmetries of the Floquet operator Uðk; TÞ. Related
symmetries have been discussed for the stationary
Hofstadter Hamiltonian H [22]. First, magnetic transla-
tional symmetry ofH (and U) dictates that an isolated band
has q-fold degeneracy for flux α ¼ p=q and its Chern
number satisfies the Diophantine equation pcl þ qtl ¼ 1,
where tl is an integer [23]. For p ¼ −1 and q ¼ 3,
cl ¼ −4, −1, 2, 5, 8, etc. This forces all the quasienergy

FIG. 1 (color online). Quasienergy spectra of a finite (in the x
direction) slab of periodically driven quantum Hall system at flux
−1=3 and fixed θx ¼ π=3. The four panels θy ¼ 0.5π, π, 1.2π,
and 1.5π correspond to phase A, B, C, andD, respectively, shown
in Fig. 2. Edge states localized on the left and right edge are
shown in blue (darker grey) and green (lighter grey), respectively.
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bands to have nonzero Chern numbers differing by multi-
ples of 3. Second, U is invariant under spatial inversion
ky → −ky, x → L − x (in the slab geometry). Thus, an edge
state solution ωðkyÞ implies another edge state at −ky with
the same quasienergy ω and localized at the opposite edge.
Third, H has a discrete chiral (sublattice) symmetry [15]:
ΓHΓ ¼ −H, where Γ stands for staggered gauge
transformation, Γ∶ jri → ð−1Þmþnjri, with Γ2 ¼ 1. In
reciprocal space, Γ amounts to a π shift in k,
ΓHðkx; kyÞΓ ¼ Hðkx þ π; ky þ πÞ ¼ −Hðkx; kyÞ [22]. It
follows that for U in the slab geometry U�ðkyÞ ¼
ΓxUðky þ πÞΓx, where operator Γx performs the local
gauge transformation jxi → ð−1Þxjxi. Therefore, if
ωðkyÞ is a quasienergy eigenvalue, e.g., an edge state
solution, so is −ω at shifted momentum ky þ π. Two such
edge states at ωðkyÞ and −ωðky þ πÞ reside at the same
edge. This will have a significant consequence for edge
modes at the QBZ boundary, where ω ¼ π=T and −ω ¼
−π=T become equivalent to each other.
Applying the theoretical analysis outlined above, we

obtain Fig. 2, the “phase diagram” of the kicked quantum
Hall system in terms of two independent driving parameters
θx and θy. It showcases four representative phases [24],
labeled by A to D, for flux α ¼ −1=3. All of them feature
three well defined quasienergy bands and three gaps, while
the spectrum in the rest of the phase diagram is largely
gapless. The corresponding spectrum of each phase in the

slab geometry can be found in Fig. 1. The table in Fig. 2
summarizes what we know about each phase: the number
of edge modes on the left edge propagating in the �ŷ
direction ðnþl ; n−l Þ inside the lth gap, the winding number
wl of the lth gap, and the Chern number cl of the lth
band. Note that wl and cl are calculated independently
from the bulk spectrum. At the phase transition points
where the gap closes, the Chern numbers always change
by a multiple of 3, consistent with the Diophantine
equation [23]. In what follows, we discuss in turn each
of these phases.
(i) The main features of phase A can be understood by

considering the fast driving limit θ1, θ2 ≪ 1. The effective
Hamiltonian H takes the same form of H in Eq. (1), only
with the bare hopping replaced by the effective hopping
Jx → Jxτ=T, Jy → Jyð1 − τ=TÞ. The driven system in
phase A stroboscopically mimics a static QH system with
the same flux but renormalized hopping. In particular, there
is no edge state crossing the gap centered around �π=T.
(ii) Phase B highlights a remarkable consequence of

periodic driving: there are now two chiral edge modes
inside the second and third gap. This is in sharp contrast to
phase A, not only in the number of edge modes, but also in
their chirality. Thus, simple periodic modulations of hop-
ping proposed here are sufficient to change both the
number and the chirality of edge states, and the Chern
numbers of the bands. More importantly, phase B contains
a pair of counter-propagating edge modes, dubbed π
modes, inside the first gap at the QBZ boundary �π=T.
These two edge modes, shown in blue for the left edge,
have to come in pairs due to the chiral (sublattice)
symmetry defined above: an edge mode crossing the
QBZ boundary at kay implies another edge mode also
crossing the QBZ boundary at kby ¼ kay þ π. They are
guaranteed to have opposite group velocity because they
are related by ωðkyÞ↔ − ωðky þ πÞ. Such pairs of π modes
are reminiscent of, and, of course, fundamentally different
from, the counter-propagating edge modes protected by
time-reversal symmetry in the quantum spin Hall effect
[25]. The dispersion of the two π modes around quasie-
nergy π=T, labeled by jψai ¼ j↑i and jψbi ¼ j↓i, can be
formally described by a 1D Dirac Hamiltonian with
chiral symmetry Hπ ¼ π=T − iσzvF∂y. Note that jψa;bi ¼
Γjψb;ai, so Γ ¼ σx in this basis. After a rotation to a basis
where Γ ¼ σz is diagonal, Hπ ¼ π=T − iσxvF∂y, demon-
strating that Hπ belongs to the class AIIIð1Þ of symmetry
protected gapless 1D Dirac Hamiltonians as classified
systematically by Bernard et al. [26]. Thus, perturbations
obeying the chiral symmetry, e.g., small variations in the
hopping or the magnetic flux, cannot open a gap [26].
We have further examined the robustness of the π

modes against static on-site perturbations of the form H0 ¼P
rVðrÞjrihrj, which break the chiral symmetry.

Kinematically any potential V with a finite Fourier compo-
nent Vðky ¼ πÞ tends to mix the two modes. However, we

FIG. 2 (color online). Phase diagram of a periodically driven
quantum Hall system in the plane spanned by driving parameter
θx and θy at flux α ¼ −1=3. Each phase (A, B, C, and D) is
characterized by fðnþl ; n−l Þg, the number of modes within the lth
gap and propagating along �ŷ at the left edge. The winding
number of the lth gap wl ¼ nþl − n−l , and the Chern number of
the lth band cl ¼ wlþ1 − wl (see main text).
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find that static perturbations including a single impurity,
staggered potential along y, and a random disorder potential
VðrÞ ∈ ð−Δ;ΔÞ do not open a gap around quasienergy π.
This is verified by numerically solving for the spectra of
finite lattices of dimension Lx × Ly. To resolve the number
of edge states within the first gap, we define spectral
function ρðky;ωÞ¼

P
n;x<Lx=2δðω−EnÞj

P
yψnðx;yÞe−ikyy=

Lyj2, where the sum over x is restricted to the left half of
the slab, and En and ψn are the nth quasienergy and the
corresponding eigenwave function, respectively. As
shown in Fig. 3, ρðky;ωÞ for Δ ¼ 0.3Jx is peaked at two
different ky values, with a separation by π, suggesting two
edge modes at and near π=T despite the disorder. These
results seem to indicate that the stability of the πmodes has a
topological origin. A full understanding, however, is still
lacking.
Previous work on driven 2D lattice models [5,10] also

found chiral edge modes at �π=T. But those π modes all
have the same chirality. As a result, the number of π modes
can be predicted from the winding number w1, demonstrat-
ing the bulk-boundary correspondence [10]. In contrast,
here the π modes always come in pairs, so the net chirality
is zero, w1 ¼ nþ1 − n−1 ¼ 0. The knowledge of the winding
or Chern numbers, therefore, is insufficient to predict the
number or the chirality of the π modes.
(iii) Phase C is very similar to phase B. The only

difference is that there are four (instead of two in phase
B) chiral edge modes propagating in the same direction
inside the second and third gap. This is yet another example
that Chern numbers of the quasienergy bands can be
controlled by periodic driving.
(iv) Phase D is qualitatively different from all other

phases. First, near the QBZ boundary, there are two pairs of
counter-propagating π modes, nþ1 ¼ n−1 ¼ 2. Second, the
edge states within the second and third gap also contain
counter-propagating modes: two of the edge modes propa-
gate in the same direction, but the remaining one prop-
agates in the opposite direction. For example, nþ2 ¼ 1,

n−2 ¼ 2. Although phase D has exactly the same set of
fwlg and fclg as phase A, it has counter-propagating edge
modes in all three quasienergy gaps that are robust against
weak disorder.
The evolution of the edge states and the successive phase

transitions as θx;y are varied can be captured by a simple
model, a two-leg ladder extending in the y direction. For
flux 1=3, the Floquet operator of the ladder is
Uðky; TÞ ¼ eiθy½− cos kyþσz

ffiffi
3

p
sin ky�eiθxσx , where the σ’s are

the Pauli matrices in the orbital space. It follows that the
effective Hamiltonian of the ladder

HðkyÞT ¼ θy cos ky þ σ · hðkyÞ

with hðkyÞ ¼ jhj ¼ arccos½cos θx cosðθy
ffiffiffi
3

p
sin kyÞ�. Thus,

the quasienergy spectrum has two bands (branches)

ω�ðkyÞT ¼ θy cos ky � hðkyÞ; ðmod 2πÞ:

Figure 3 shows the ladder spectrum for θx ¼ π=3 and
θy ¼ π (phase B), which agrees remarkably with the edge
modes shown in Fig. 1. As θy is increased, both the
curvature and the width of the bands increase. Beyond a
critical value θy ≃ 0.57π, the top of the ωþ band (and the
bottom of the ω− band) grows beyond the QBZ, and
reenters from the opposite side of the QBZ. Consequently,
the number of states crossing the QBZ boundary jumps
from 0 to 4, marking a transition from phase A to phase
B. From this perspective, the pair of π modes results
directly from the winding of quasienergy across the QBZ
boundary as driving in the y direction (θy) is increased. For
θy > 1.33π, both the top and bottom of ω� exceed the
QBZ, giving rise to two pairs of π modes at each edge in
phase D. When folded into the QBZ, they intrude into the
second and third gap, leading to the anomalous edge mode
propagating in the “wrong” direction.
The anomalous edge modes unique to a periodically

driven QH system can be detected experimentally by
momentum-resolved radio-frequency spectroscopy [27],
which measures the spectral function ρðky;ωÞ. Atoms
occupying the π mode at quasienergy ω absorb a radio-
frequency photon and undergo a vertical transition to
an empty hyperfine state, which can be subsequently
imaged. For example, in phase B, the measured spectral
function will feature peaks at ka;by and energy
En ¼ ð2nþ 1Þπ=T. Alternatively, the edge currents can
be probed by quantum quenches that convert them into
density patterns [28] or by following the recent proposal
of Ref. [29].
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FIG. 3 (color online). Left: robust edge states in the presence of
disorder Δ ¼ 0.3Jx. The two peaks in the spectral function for
ω ¼ π=T (circle) and 0.9π=T (filled diamond) suggest two π
modes at the left edge, consistent with Fig. 1(b). Right: winding
of the quasienergy spectrum of a two-leg ladder. Blue (darker
grey) and green (lighter grey) indicate that the eigenstate is
predominantly on the left and right leg, respectively. α ¼ −1=3,
θx ¼ π=3, θy ¼ π.
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